2017
McLaren, Elgin-Skye, Antle, Alissa N.
Exploring and Evaluating Sound for Helping Children Self-Regulate with a Brain-Computer Application Proceedings Article
In: Proceedings of the 2017 Conference on Interaction Design and Children, pp. 393–398, Association for Computing Machinery, Stanford, California, USA, 2017, ISBN: 9781450349215.
Abstract | Links | BibTeX | Tags: adhd, brain-computer interfacing, children, design, neurofeedback, sound
@inproceedings{10.1145/3078072.3084299,
title = {Exploring and Evaluating Sound for Helping Children Self-Regulate with a Brain-Computer Application},
author = {Elgin-Skye McLaren and Alissa N. Antle},
url = {https://doi.org/10.1145/3078072.3084299},
doi = {10.1145/3078072.3084299},
isbn = {9781450349215},
year = {2017},
date = {2017-01-01},
booktitle = {Proceedings of the 2017 Conference on Interaction Design and Children},
pages = {393–398},
publisher = {Association for Computing Machinery},
address = {Stanford, California, USA},
series = {IDC '17},
abstract = {Children in North America are more likely to suffer from attentional challenges than any other mental health issue. Studies suggest that neurofeedback treatments may be useful for helping these children learn to self-regulate. Applying neurofeedback treatments in real-world, school settings poses a challenge, however, as these environments are often noisy and filled with distractions. The addition of ambient audio to neurofeedback systems may help reduce these disruptions. Further, research suggests that certain auditory treatments, such as binaural beats and white noise, may improve children's focus and aid memory recall. In the following paper we present the theories supporting this idea as well as a mixed methods framework for evaluating whether sound can help children focus while learning to self-regulate using a neurofeedback system. Specifically, we wish to investigate whether these treatments may help children (1) achieve an attentive state sooner and (2) maintain an attentive state for longer, when compared to the same system without sound.},
keywords = {adhd, brain-computer interfacing, children, design, neurofeedback, sound},
pubstate = {published},
tppubtype = {inproceedings}
}
Children in North America are more likely to suffer from attentional challenges than any other mental health issue. Studies suggest that neurofeedback treatments may be useful for helping these children learn to self-regulate. Applying neurofeedback treatments in real-world, school settings poses a challenge, however, as these environments are often noisy and filled with distractions. The addition of ambient audio to neurofeedback systems may help reduce these disruptions. Further, research suggests that certain auditory treatments, such as binaural beats and white noise, may improve children's focus and aid memory recall. In the following paper we present the theories supporting this idea as well as a mixed methods framework for evaluating whether sound can help children focus while learning to self-regulate using a neurofeedback system. Specifically, we wish to investigate whether these treatments may help children (1) achieve an attentive state sooner and (2) maintain an attentive state for longer, when compared to the same system without sound.