Much has changed since the first edition of Human–Computer Interaction was published. Ubiquitous computing and rich sensor-filled environments are finding their way out of the laboratory, not just into movies but also into our workplaces and homes. The computer has broken out of its plastic and glass bounds providing us with networked societies where personal computing devices from mobile phones to smart cards fill our pockets and electronic devices surround us at home and work. The web too has grown from a largely academic network into the hub of business and everyday lives. As the distinctions between the physical and the digital, and between work and leisure start to break down, human–computer interaction is also changing radically.

The excitement of these changes is captured in this new edition, which also looks forward to other emerging technologies. However, the book is firmly rooted in strong principles and models independent of the passing technologies of the day: these foundations will be the means by which today’s students will understand tomorrow’s technology.

The third edition of Human–Computer Interaction can be used for introductory and advanced courses on HCI, Interaction Design, Usability or Interactive Systems Design. It will also prove an invaluable reference for professionals wishing to design usable computing devices.

Accompanying the text is a comprehensive website containing a broad range of material for instructors, students and practitioners, a full text search facility for the book, links to many sites of additional interest and much more: go to www.hcibook.com

New to this edition:
- A revised structure, reflecting the growth of HCI as a discipline, separates out basic material suitable for introductory courses from more detailed models and theories.
- A new chapter on Interaction Design adds material on scenarios and basic navigation design.
- A new chapter on Universal Design, substantially extending the coverage of this material in the book.
- Updated and extended treatment of socio-contextual issues.
- Extended and new material on novel interaction, including updated ubicomp material, designing experience, physical sensors and a new chapter on Rich Interaction.
- Updated material about the web including dynamic content.
- Relaunched website including case studies, WAP access and search.

Alan Dix is Professor in the Department of Computing, Lancaster, UK, Janet Finlay is Professor in the School of Computing, Leeds Metropolitan University, UK, Gregory D. Abowd is Associate Professor in the College of Computing and GVU Center at Georgia Tech, USA, Russell Beale is lecturer at the School of Computer Science, University of Birmingham, UK.
Human–Computer Interaction
We work with leading authors to develop the strongest educational materials in computing, bringing cutting-edge thinking and best learning practice to a global market.

Under a range of well-known imprints, including Prentice Hall, we craft high quality print and electronic publications which help readers to understand and apply their content, whether studying or at work.

To find out more about the complete range of our publishing, please visit us on the world wide web at: www.pearsoned.co.uk
## Brief Contents

**Part 1**  **FOUNDATIONS**  
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The human</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>The computer</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>The interaction</td>
<td>123</td>
</tr>
<tr>
<td>4</td>
<td>Paradigms</td>
<td>164</td>
</tr>
</tbody>
</table>

**Part 2**  **DESIGN PROCESS**  
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Interaction design basics</td>
<td>191</td>
</tr>
<tr>
<td>6</td>
<td>HCI in the software process</td>
<td>225</td>
</tr>
<tr>
<td>7</td>
<td>Design rules</td>
<td>258</td>
</tr>
<tr>
<td>8</td>
<td>Implementation support</td>
<td>289</td>
</tr>
<tr>
<td>9</td>
<td>Evaluation techniques</td>
<td>318</td>
</tr>
<tr>
<td>10</td>
<td>Universal design</td>
<td>365</td>
</tr>
<tr>
<td>11</td>
<td>User support</td>
<td>395</td>
</tr>
</tbody>
</table>

**Part 3**  **MODELS AND THEORIES**  
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Cognitive models</td>
<td>419</td>
</tr>
<tr>
<td>13</td>
<td>Socio-organizational issues and stakeholder requir</td>
<td>450</td>
</tr>
</tbody>
</table>
Evaluation tests the usability, functionality and acceptability of an interactive system.

Evaluation may take place:
- in the laboratory
- in the field.

Some approaches are based on expert evaluation:
- analytic methods
- review methods
- model-based methods.

Some approaches involve users:
- experimental methods
- observational methods
- query methods.

An evaluation method must be chosen carefully and must be suitable for the job.
What is evaluation?

In previous chapters we have discussed a design process to support the design of usable interactive systems. However, even if such a process is used, we still need to assess our designs and test our systems to ensure that they actually behave as we expect and meet user requirements. This is the role of evaluation.

Evaluation should not be thought of as a single phase in the design process (still less as an activity tacked on the end of the process if time permits). Ideally, evaluation should occur throughout the design life cycle, with the results of the evaluation feeding back into modifications to the design. Clearly, it is not usually possible to perform extensive experimental testing continuously throughout the design, but analytic and informal techniques can and should be used. In this respect, there is a close link between evaluation and the principles and prototyping techniques we have already discussed – such techniques help to ensure that the design is assessed continually. This has the advantage that problems can be ironed out before considerable effort and resources have been expended on the implementation itself: it is much easier to change a design in the early stages of development than in the later stages.

We can make a broad distinction between evaluation by the designer or a usability expert, without direct involvement by users, and evaluation that studies actual use of the system. The former is particularly useful for assessing early designs and prototypes; the latter normally requires a working prototype or implementation. However, this is a broad distinction and, in practice, the user may be involved in assessing early design ideas (for example, through focus groups), and expert-based analysis can be performed on completed systems, as a cheap and quick usability assessment. We will consider evaluation techniques under two broad headings: expert analysis and user participation.

Before looking at specific techniques, however, we will consider why we do evaluation and what we are trying to achieve.

Goals of evaluation

Evaluation has three main goals: to assess the extent and accessibility of the system’s functionality, to assess users’ experience of the interaction, and to identify any specific problems with the system.

The system’s functionality is important in that it must accord with the user’s requirements. In other words, the design of the system should enable users to perform their intended tasks more easily. This includes not only making the appropriate functionality available within the system, but making it clearly reachable by the user in terms of the actions that the user needs to take to perform the task. It also involves matching the use of the system to the user’s expectations of the task. For example, if a filing clerk is used to retrieving a customer’s file by the postal address,
the same capability (at least) should be provided in the computerized file system. Evaluation at this level may also include measuring the user’s performance with the system, to assess the effectiveness of the system in supporting the task.

In addition to evaluating the system design in terms of its functional capabilities, it is important to assess the user’s experience of the interaction and its impact upon him. This includes considering aspects such as how easy the system is to learn, its usability and the user’s satisfaction with it. It may also include his enjoyment and emotional response, particularly in the case of systems that are aimed at leisure or entertainment. It is important to identify areas of the design that overload the user in some way, perhaps by requiring an excessive amount of information to be remembered, for example. A fuller classification of principles that can be used as evaluation criteria is provided in Chapter 7. Much evaluation is aimed at measuring features such as these.

The final goal of evaluation is to identify specific problems with the design. These may be aspects of the design which, when used in their intended context, cause unexpected results, or confusion amongst users. This is, of course, related to both the functionality and usability of the design (depending on the cause of the problem). However, it is specifically concerned with identifying trouble-spots which can then be rectified.

**EVALUATION THROUGH EXPERT ANALYSIS**

As we have noted, evaluation should occur throughout the design process. In particular, the first evaluation of a system should ideally be performed before any implementation work has started. If the design itself can be evaluated, expensive mistakes can be avoided, since the design can be altered prior to any major resource commitments. Typically, the later in the design process that an error is discovered, the more costly it is to put right and, therefore, the less likely it is to be rectified. However, it can be expensive to carry out user testing at regular intervals during the design process, and it can be difficult to get an accurate assessment of the experience of interaction from incomplete designs and prototypes. Consequently, a number of methods have been proposed to evaluate interactive systems through expert analysis. These depend upon the designer, or a human factors expert, taking the design and assessing the impact that it will have upon a typical user. The basic intention is to identify any areas that are likely to cause difficulties because they violate known cognitive principles, or ignore accepted empirical results. These methods can be used at any stage in the development process from a design specification, through storyboards and prototypes, to full implementations, making them flexible evaluation approaches. They are also relatively cheap, since they do not require user involvement. However, they do not assess actual use of the system, only whether or not a system upholds accepted usability principles.

We will consider four approaches to expert analysis: cognitive walkthrough, heuristic evaluation, the use of models and use of previous work.
9.3.1 Cognitive walkthrough

Cognitive walkthrough was originally proposed and later revised by Polson and colleagues [294, 376] as an attempt to introduce psychological theory into the informal and subjective walkthrough technique.

The origin of the cognitive walkthrough approach to evaluation is the code walkthrough familiar in software engineering. Walkthroughs require a detailed review of a sequence of actions. In the code walkthrough, the sequence represents a segment of the program code that is stepped through by the reviewers to check certain characteristics (for example, that coding style is adhered to, conventions for spelling variables versus procedure calls, and to check that system-wide invariants are not violated). In the cognitive walkthrough, the sequence of actions refers to the steps that an interface will require a user to perform in order to accomplish some known task. The evaluators then ‘step through’ that action sequence to check it for potential usability problems. Usually, the main focus of the cognitive walkthrough is to establish how easy a system is to learn. More specifically, the focus is on learning through exploration. Experience shows that many users prefer to learn how to use a system by exploring its functionality hands on, and not after sufficient training or examination of a user’s manual. So the checks that are made during the walkthrough ask questions that address this exploratory learning. To do this, the evaluators go through each step in the task and provide a ‘story’ about why that step is or is not good for a new user. To do a walkthrough (the term walkthrough from now on refers to the cognitive walkthrough, and not to any other kind of walkthrough), you need four things:

1. A specification or prototype of the system. It doesn’t have to be complete, but it should be fairly detailed. Details such as the location and wording for a menu can make a big difference.
2. A description of the task the user is to perform on the system. This should be a representative task that most users will want to do.
3. A complete, written list of the actions needed to complete the task with the proposed system.
4. An indication of who the users are and what kind of experience and knowledge the evaluators can assume about them.

Given this information, the evaluators step through the action sequence (identified in item 3 above) to critique the system and tell a believable story about its usability. To do this, for each action, the evaluators try to answer the following four questions for each step in the action sequence.

1. Is the effect of the action the same as the user’s goal at that point? Each user action will have a specific effect within the system. Is this effect the same as what the user is trying to achieve at this point? For example, if the effect of the action is to save a document, is ‘saving a document’ what the user wants to do?
2. Will users see that the action is available? Will users see the button or menu item, for example, that is used to produce the action? This is not asking whether they will recognize that the button is the one they want. This is merely asking whether
Evaluation techniques

It is visible to them at the time when they will need to use it. Instances where the answer to this question might be ‘no’ are, for example, where a VCR remote control has a covered panel of buttons or where a menu item is hidden away in a submenu.

3. Once users have found the correct action, will they know it is the one they need?
This complements the previous question. It is one thing for a button or menu item to be visible, but will the user recognize that it is the one he is looking for to complete his task? Where the previous question was about the visibility of the action, this one is about whether its meaning and effect is clear.

4. After the action is taken, will users understand the feedback they get? If you now assume that the user did manage to achieve the correct action, will he know that he has done so? Will the feedback given be sufficient confirmation of what has actually happened? This is the completion of the execution–evaluation interaction cycle (see Chapter 3). In order to determine if they have accomplished their goal, users need appropriate feedback.

It is vital to document the cognitive walkthrough to keep a record of what is good and what needs improvement in the design. It is therefore a good idea to produce some standard evaluation forms for the walkthrough. The cover form would list the information in items 1–4 in our first list above, as well as identifying the date and time of the walkthrough and the names of the evaluators. Then for each action (from item 3 on the cover form), a separate standard form is filled out that answers each of the four questions in our second list above. Any negative answer for any of the questions for any particular action should be documented on a separate usability problem report sheet. This problem report sheet should indicate the system being built (the version, if necessary), the date, the evaluators and a detailed description of the usability problem. It is also useful to indicate the severity of the problem, that is whether the evaluators think this problem will occur often, and how serious it will be for the users. This information will help the designers to decide priorities for correcting the design, since it is not always possible to fix every problem.

Example: programming a video recorder by remote control

We can illustrate how the walkthrough method works using a simple example. Imagine we are designing a remote control for a video recorder (VCR) and are interested in the task of programming the VCR to do timed recordings. Our initial design is shown in Figure 9.1. The picture on the left illustrates the handset in normal use, the picture on the right after the timed record button has been pressed. The VCR allows the user to program up to three timed recordings in different ‘streams’. The next available stream number is automatically assigned. We want to know whether our design supports the user’s task. We begin by identifying a representative task.

Program the video to time-record a program starting at 18.00 and finishing at 19.15 on channel 4 on 24 February 2005.
We will assume that the user is familiar with VCRs but not with this particular design.

The next step in the walkthrough is to identify the action sequence for this task. We specify this in terms of the user’s action (UA) and the system’s display or response (SD). The initial display is as the left-hand picture in Figure 9.1.

UA 1: Press the ‘timed record’ button
SD 1: Display moves to timer mode. Flashing cursor appears after ‘start:’
UA 2: Press digits 1 8 0 0
SD 2: Each digit is displayed as typed and flashing cursor moves to next position
UA 3: Press the ‘timed record’ button
SD 3: Flashing cursor moves to ‘end:’
UA 4: Press digits 1 9 1 5
SD 4: Each digit is displayed as typed and flashing cursor moves to next position
UA 5: Press the ‘timed record’ button
SD 5: Flashing cursor moves to ‘channel:’
UA 6: Press digit 4
SD 6: Digit is displayed as typed and flashing cursor moves to next position
UA 7: Press the ‘timed record’ button
SD 7: Flashing cursor moves to ‘date:’
UA 8: Press digits 2 4 0 2 0 5
SD 8: Each digit is displayed as typed and flashing cursor moves to next position
UA 9: Press the ‘timed record’ button
SD 9: Stream number in top right-hand corner of display flashes
UA 10: Press the ‘transmit’ button
SD 10: Details are transmitted to video player and display returns to normal mode.

Figure 9.1 An initial remote control design

9.3 Evaluation through expert analysis
9.3.2 Heuristic evaluation

A heuristic is a guideline or general principle or rule of thumb that can guide a design decision or be used to critique a decision that has already been made. Heuristic evaluation, developed by Jakob Nielsen and Rolf Molich, is a method for structuring the critique of a system using a set of relatively simple and general heuristics. Heuristic evaluation can be performed on a design specification so it is useful for evaluating early design. But it can also be used on prototypes, storyboards and fully functioning systems. It is therefore a flexible, relatively cheap approach. Hence it is often considered a discount usability technique.

The general idea behind heuristic evaluation is that several evaluators independently critique a system to come up with potential usability problems. It is important that there be several of these evaluators and that the evaluations be done independently. Nielsen’s experience indicates that between three and five evaluators is sufficient, with five usually resulting in about 75% of the overall usability problems being discovered.
To aid the evaluators in discovering usability problems, a set of 10 heuristics are provided. The heuristics are related to principles and guidelines (see Chapter 7). These can be supplemented where required by heuristics that are specific to the particular domain. So, for example, if the system is for synchronous group communication, one might add ‘awareness of other users’ as a heuristic. Although Nielsen recommends the use of these 10 as providing the most effective coverage of the most common usability problems, other rules, such as those discussed in Chapter 7, could also be used.

Each evaluator assesses the system and notes violations of any of these heuristics that would indicate a potential usability problem. The evaluator also assesses the severity of each usability problem, based on four factors: how common is the problem, how easy is it for the user to overcome, will it be a one-off problem or a persistent one, and how seriously will the problem be perceived? These can be combined into an overall severity rating on a scale of 0–4:

- 0 = I don’t agree that this is a usability problem at all
- 1 = Cosmetic problem only: need not be fixed unless extra time is available on project
- 2 = Minor usability problem: fixing this should be given low priority
- 3 = Major usability problem: important to fix, so should be given high priority
- 4 = Usability catastrophe: imperative to fix this before product can be released (Nielsen)

Nielsen’s ten heuristics are:

1. Visibility of system status Always keep users informed about what is going on, through appropriate feedback within reasonable time. For example, if a system operation will take some time, give an indication of how long and how much is complete.
2. Match between system and the real world The system should speak the user’s language, with words, phrases and concepts familiar to the user, rather than system-oriented terms. Follow real-world conventions, making information appear in natural and logical order.
3. User control and freedom Users often choose system functions by mistake and need a clearly marked ‘emergency exit’ to leave the unwanted state without having to go through an extended dialog. Support undo and redo.
4. Consistency and standards Users should not have to wonder whether words, situations or actions mean the same thing in different contexts. Follow platform conventions and accepted standards.
5. Error prevention Make it difficult to make errors. Even better than good error messages is a careful design that prevents a problem from occurring in the first place.
6. Recognition rather than recall Make objects, actions and options visible. The user should not have to remember information from one part of the dialog to another. Instructions for use of the system should be visible or easily retrievable whenever appropriate.
7. Flexibility and efficiency of use Allow users to tailor frequent actions. Accelerators – unseen by the novice user – may often speed up the interaction for the expert user to such an extent that the system can cater to both inexperienced and experienced users.
8. **Aesthetic and minimalist design** Dialogs should not contain information that is irrelevant or rarely needed. Every extra unit of information in a dialog competes with the relevant units of information and diminishes their relative visibility.

9. **Help users recognize, diagnose and recover from errors** Error messages should be expressed in plain language (no codes), precisely indicate the problem, and constructively suggest a solution.

10. **Help and documentation** Few systems can be used without instructions so it may be necessary to provide help and documentation. Any such information should be easy to search, focused on the user’s task, list concrete steps to be carried out, and not be too large.

Once each evaluator has completed their separate assessment, all of the problems are collected and the mean severity ratings calculated. The design team will then determine the ones that are the most important and will receive attention first.

### 9.3.3 Model-based evaluation

A third expert-based approach is the use of models. Certain cognitive and design models provide a means of combining design specification and evaluation into the same framework. These are discussed in detail in Chapter 12. For example, the GOMS (goals, operators, methods, and selection) model predicts user performance with a particular interface and can be used to filter particular design options. Similarly, lower-level modeling techniques such as the keystroke-level model provide predictions of the time users will take to perform low-level physical tasks.

Design methodologies, such as design rationale (see Chapter 6), also have a role to play in evaluation at the design stage. Design rationale provides a framework in which design options can be evaluated. By examining the criteria that are associated with each option in the design, and the evidence that is provided to support these criteria, informed judgments can be made in the design.

Dialog models can also be used to evaluate dialog sequences for problems, such as unreachable states, circular dialogs, and complexity. Models such as state transition networks are useful for evaluating dialog designs prior to implementation. These are discussed in detail in Chapter 16.

### 9.3.4 Using previous studies in evaluation

Experimental psychology and human–computer interaction between them possess a wealth of experimental results and empirical evidence. Some of this is specific to a particular domain, but much deals with more generic issues and applies in a variety of situations. Examples of such issues are the usability of different menu types, the recall of command names, and the choice of icons.

A final approach to expert evaluation exploits this inheritance, using previous results as evidence to support (or refute) aspects of the design. It is expensive to repeat experiments continually and an expert review of relevant literature can avoid
the need to do so. It should be noted that experimental results cannot be expected
to hold arbitrarily across contexts. The reviewer must therefore select evidence care-
fully, noting the experimental design chosen, the population of participants used, the
analyses performed and the assumptions made. For example, an experiment testing
the usability of a particular style of help system using novice participants may not
provide accurate evaluation of a help system designed for expert users. The review
should therefore take account of both the similarities and the differences between
the experimental context and the design under consideration. This is why this is
an expert review: expertise in the area is required to ensure that correct assumptions
are made.

9.4 Evaluation through user participation

EVALUATION THROUGH USER PARTICIPATION

The techniques we have considered so far concentrate on evaluating a design or
system through analysis by the designer, or an expert evaluator, rather than testing
with actual users. However, useful as these techniques are for filtering and refining
the design, they are not a replacement for actual usability testing with the people
for whom the system is intended: the users. In this section we will look at a number
of different approaches to evaluation through user participation. These include
empirical or experimental methods, observational methods, query techniques, and
methods that use physiological monitoring, such as eye tracking and measures of
heart rate and skin conductance.

User participation in evaluation tends to occur in the later stages of development
when there is at least a working prototype of the system in place. This may range
from a simulation of the system’s interactive capabilities, without its underlying
functionality (for example, the Wizard of Oz technique, which is discussed in
Chapter 6, through a basic functional prototype to a fully implemented system.
However, some of the methods discussed can also contribute to the earlier design
stages, such as requirements capture, where observation and surveying users are
important (see Chapter 13).

9.4.1 Styles of evaluation

Before we consider some of the techniques that are available for evaluation with
users, we will distinguish between two distinct evaluation styles: those performed
under laboratory conditions and those conducted in the work environment or ‘in the
field’.

Laboratory studies

In the first type of evaluation studies, users are taken out of their normal work envir-
onment to take part in controlled tests, often in a specialist usability laboratory
(although the ‘lab’ may simply be a quiet room). This approach has a number of benefits and disadvantages.

A well-equipped usability laboratory may contain sophisticated audio/visual recording and analysis facilities, two-way mirrors, instrumented computers and the like, which cannot be replicated in the work environment. In addition, the participant operates in an interruption-free environment. However, the lack of context – for example, filing cabinets, wall calendars, books or interruptions – and the unnatural situation may mean that one accurately records a situation that never arises in the real world. It is especially difficult to observe several people cooperating on a task in a laboratory situation, as interpersonal communication is so heavily dependent on context (see Section 9.4.2).

There are, however, some situations where laboratory observation is the only option, for example, if the system is to be located in a dangerous or remote location, such as a space station. Also some very constrained single-user tasks may be adequately performed in a laboratory. Finally, and perhaps most commonly, we may deliberately want to manipulate the context in order to uncover problems or observe less used procedures, or we may want to compare alternative designs within a controlled context. For these types of evaluation, laboratory studies are appropriate.

**Field studies**

The second type of evaluation takes the designer or evaluator out into the user’s work environment in order to observe the system in action. Again this approach has its pros and cons.

High levels of ambient noise, greater levels of movement and constant interruptions, such as phone calls, all make field observation difficult. However, the very ‘open’ nature of the situation means that you will observe interactions between systems and between individuals that would have been missed in a laboratory study. The context is retained and you are seeing the user in his ‘natural environment’. In addition, some activities, such as those taking days or months, are impossible to study in the laboratory (though difficult even in the field).

On balance, field observation is to be preferred to laboratory studies as it allows us to study the interaction as it occurs in actual use. Even interruptions are important as these will expose behaviors such as saving and restoring state during a task. However, we should remember that even in field observations the participants are likely to be influenced by the presence of the analyst and/or recording equipment, so we always operate at a slight remove from the natural situation, a sort of Heisenberg uncertainty principle.

This is, of course, a generalization: there are circumstances, as we have noted, in which laboratory testing is necessary and desirable. In particular, controlled experiments can be useful for evaluation of specific interface features, and must normally be conducted under laboratory conditions. From an economic angle, we need to weigh the costs of establishing recording equipment in the field, and possibly disrupting the actual work situation, with the costs of taking one or more participants
away from their jobs into the laboratory. This balance is not at all obvious and any study must weigh the loss of contextual information against the increased costs and difficulty of field studies.

### 9.4.2 Empirical methods: experimental evaluation

One of the most powerful methods of evaluating a design or an aspect of a design is to use a controlled experiment. This provides empirical evidence to support a particular claim or hypothesis. It can be used to study a wide range of different issues at different levels of detail.

Any experiment has the same basic form. The evaluator chooses a hypothesis to test, which can be determined by measuring some attribute of participant behavior. A number of experimental conditions are considered which differ only in the values of certain controlled variables. Any changes in the behavioral measures are attributed to the different conditions. Within this basic form there are a number of factors that are important to the overall reliability of the experiment, which must be considered carefully in experimental design. These include the participants chosen, the variables tested and manipulated, and the hypothesis tested.

**Participants**

The choice of participants is vital to the success of any experiment. In evaluation experiments, participants should be chosen to match the expected user population as closely as possible. Ideally, this will involve experimental testing with the actual users but this is not always possible. If participants are not actual users, they should be chosen to be of a similar age and level of education as the intended user group. Their experience with computers in general, and with systems related to that being tested, should be similar, as should their experience or knowledge of the task domain. It is no good testing an interface designed to be used by the general public on a participant set made up of computer science undergraduates: they are simply not representative of the intended user population.

A second issue relating to the participant set is the sample size chosen. Often this is something that is determined by pragmatic considerations: the availability of participants is limited or resources are scarce. However, the sample size must be large enough to be considered to be representative of the population, taking into account the design of the experiment and the statistical methods chosen.

Nielsen and Landauer [264] suggest that usability testing with a single participant will find about a third of the usability problems, and that there is little to be gained from testing with more than five. While this may be true of observational studies where the aim is simply to uncover usability issues, it is not possible to discover much about the extent of usability problems from such small numbers. Certainly, if the intention is to run a controlled experiment and perform statistical analysis on the results, at least twice this number is recommended.
Variables

Experiments manipulate and measure variables under controlled conditions, in order to test the hypothesis. There are two main types of variable: those that are ‘manipulated’ or changed (known as the independent variables) and those that are measured (the dependent variables).

Independent variables are those elements of the experiment that are manipulated to produce different conditions for comparison. Examples of independent variables in evaluation experiments are interface style, level of help, number of menu items and icon design. Each of these variables can be given a number of different values; each value that is used in an experiment is known as a level of the variable. So, for example, an experiment that wants to test whether search speed improves as the number of menu items decreases may consider menus with five, seven, and ten items. Here the independent variable, number of menu items, has three levels.

More complex experiments may have more than one independent variable. For example, in the above experiment, we may suspect that the speed of the user’s response depends not only on the number of menu items but also on the choice of commands used on the menu. In this case there are two independent variables. If there were two sets of command names (that is, two levels), we would require six experimental conditions to investigate all the possibilities (three levels of menu size × two levels of command names).

Dependent variables, on the other hand, are the variables that can be measured in the experiment, their value is ‘dependent’ on the changes made to the independent variable. In the example given above, this would be the speed of menu selection. The dependent variable must be measurable in some way, it must be affected by the independent variable, and, as far as possible, unaffected by other factors. Common choices of dependent variable in evaluation experiments are the time taken to complete a task, the number of errors made, user preference and the quality of the user’s performance. Obviously, some of these are easier to measure objectively than others. However, the more subjective measures can be applied against predetermined scales, and can be very important factors to consider.

Hypotheses

A hypothesis is a prediction of the outcome of an experiment. It is framed in terms of the independent and dependent variables, stating that a variation in the independent variable will cause a difference in the dependent variable. The aim of the experiment is to show that this prediction is correct. This is done by disproving the null hypothesis, which states that there is no difference in the dependent variable between the levels of the independent variable. The statistical measures described below produce values that can be compared with various levels of significance. If a result is significant it shows, at the given level of certainty, that the differences measured would not have occurred by chance (that is, that the null hypothesis is incorrect).
Experimental design

In order to produce reliable and generalizable results, an experiment must be carefully designed. We have already looked at a number of the factors that the experimenter must consider in the design, namely the participants, the independent and dependent variables, and the hypothesis. The first phase in experimental design then is to choose the hypothesis: to decide exactly what it is you are trying to demonstrate. In doing this you are likely to clarify the independent and dependent variables, in that you will have identified what you are going to manipulate and what change you expect. If your hypothesis does not clearly identify these variables then you need to rethink it. At this stage you should also consider your participants: how many are available and are they representative of the user group?

The next step is to decide on the experimental method that you will use. There are two main methods: between-subjects and within-subjects. In a between-subjects (or randomized) design, each participant is assigned to a different condition. There are at least two conditions: the experimental condition (in which the variable has been manipulated) and the control, which is identical to the experimental condition except for this manipulation. This control serves to ensure that it is the manipulation that is responsible for any differences that are measured. There may, of course, be more than two groups, depending on the number of independent variables and the number of levels that each variable can take.

The advantage of a between-subjects design is that any learning effect resulting from the user performing in one condition and then the other is controlled: each user performs under only one condition. The disadvantages are that a greater number of participants are required, and that significant variation between the groups can negate any results. Also, individual differences between users can bias the results. These problems can be handled by a careful selection of participants, ensuring that all are representative of the population and by matching participants between groups.

The second experimental design is within-subjects (or repeated measures). Here each user performs under each different condition. This design can suffer from transfer of learning effects, but this can be lessened if the order in which the conditions are tackled is varied between users, for example, group A do first condition followed by second and group B do second condition followed by first. Within-subjects is less costly than between-subjects, since fewer users are required, and it can be particularly effective where learning is involved. There is also less chance of effects from variation between participants.

The choice of experimental method will depend on the resources available, how far learning transfer is likely or can be controlled, and how representative the participant group is considered to be. A popular compromise, in cases where there is more than one independent variable, is to devise a mixed design where one variable is placed between-groups and one within-groups. So, returning to our example of the menu design, the participants would be split into two groups, one for each command set, but each group would perform in three conditions, corresponding to the three possible levels of the number of menu items.
Once we have determined the hypothesis we are trying to test, the variables we are studying, the participants at our disposal, and the design that is most appropriate, we have to decide how we are going to analyze the results we record. There are a number of statistical tests available, and the choice of test is vital to the success of the experiment. Different tests make different assumptions about the data and if an inappropriate test is chosen, the results can be invalid. The next subsection discusses the factors to consider in choosing a statistical test and surveys the most common statistical measures available.

**Statistical measures**

The first two rules of statistical analysis are to *look* at the data and to *save* the data. It is easy to carry out statistical tests blindly when a glance at a graph, histogram or table of results would be more instructive. In particular, looking at the data can expose *outliers*, single data items that are very different from the rest. Outliers are often the result of a transcription error or a freak event not connected to the experiment. For example, we notice that one participant took three times as long as everyone else to do a task. We investigate and discover that the participant had been suffering from flu on the day of the experiment. Clearly, if the participant’s data were included it would bias the results.

Saving the data is important, as we may later want to try a different analysis method. It is all too common for an experimenter to take some averages or otherwise tabulate results, and then throw away the original data. At worst, the remaining statistics can be useless for statistical purposes, and, at best, we have lost the ability to trace back odd results to the original data, as, for example, we want to do for outliers.

Our choice of statistical analysis depends on the type of data and the questions we want to answer. It is worth having important results checked by an experienced statistician, but in many situations standard tests can be used.

Variables can be classified as either *discrete variables* or *continuous variables*. A discrete variable can only take a finite number of values or *levels*, for example, a screen color that can be red, green or blue. A continuous variable can take any value (although it may have an upper or lower limit), for example a person’s height or the time taken to complete a task. A special case of continuous data is when they are *positive*, for example a response time cannot be negative. A continuous variable can be rendered discrete by clumping it into classes, for example we could divide heights into short (<5 ft (1.5 m)), medium (5–6 ft (1.5–1.8 m)) and tall (>6 ft (1.8 m)). In many interface experiments we will be testing one design against another. In these cases the independent variable is usually discrete.

The dependent variable is the measured one and subject to random experimental variation. In the case when this variable is continuous, the random variation may take a special form. If the form of the data follows a known *distribution* then special and more powerful statistical tests can be used. Such tests are called *parametric tests* and the most common of these are used when the variation follows the *normal distribution*. This means that if we plot a histogram of the random errors, they will...
form the well-known bell-shaped graph (Figure 9.2). Happily, many of these tests are fairly robust, that is they give reasonable results even when the data are not precisely normal. This means that you need not worry too much about checking normality during early analysis.

There are ways of checking whether data are really normal, but for these the reader should consult a statistics book, or a professional statistician. However, as a general rule, if data can be seen as the sum or average of many small independent effects they are likely to be normal. For example, the time taken to complete a complex task is the sum of the times of all the minor tasks of which it is composed. On the other hand, a subjective rating of the usability of an interface will not be normal. Occasionally data can be transformed to become approximately normal. The most common is the log-transformation, which is used for positive data with near-zero values. As a log-transformation has little effect when the data are clustered well away from zero, many experimenters habitually log-transform. However, this practice makes the results more difficult to interpret and is not recommended.

When we cannot assume that data are normally distributed, we must often resort to non-parametric tests. These are statistical tests that make no assumptions about the particular distribution and are usually based purely on the ranking of the data. That is, each item of a data set (for example, 57, 32, 61, 49) is reduced to its rank (3, 1, 4, 2), before analysis begins. Because non-parametric tests make fewer assumptions about the data than parametric tests, and are more resistant to outliers, there is less danger of getting spurious results. However, they are less powerful than the corresponding parametric tests. This means that, given the same set of data, a parametric test might detect a difference that the non-parametric test would miss.

A third sort of test is the contingency table, where we classify data by several discrete attributes and then count the number of data items with each attribute combination.

Table 9.1 lists some of the standard tests categorized by the form of independent and dependent variables (discrete/continuous/normal). Normality is not an issue
for the independent variable, but a special case is when it is discrete with only two values, for example comparing two systems. We cannot describe all the techniques here; for this you should use a standard statistics text, such as one of those recommended in the reading list. The table is only intended to guide you in your choice of test.

An extensive and accurate analysis is no use if it answers the wrong question. Examples of questions one might ask about the data are as follows:

Is there a difference? For example, is one system better than another? Techniques that address this are called hypothesis testing. The answers to this question are not simply yes/no, but of the form: ‘we are 99% certain that selection from menus of five items is faster than that from menus of seven items’.

How big is the difference? For example, ‘selection from five items is 260 ms faster than from seven items’. This is called point estimation, often obtained by averages.

How accurate is the estimate? For example, ‘selection is faster by 260 ± 30 ms’. Statistical answers to this are in the form of either measures of variation such as the standard deviation of the estimate, or confidence intervals. Again, the answers one obtains are probabilistic: ‘we are 95% certain that the difference in response time is between 230 and 290 ms’.

The experimental design issues we have discussed have been principally addressed at the first question. However, most of the statistical techniques listed above, both parametric and non-parametric, give some answer to one or both of the other questions.

---

Table 9.1 Choosing a statistical technique

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Dependent variable</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parametric</strong></td>
<td></td>
</tr>
<tr>
<td>Two valued</td>
<td>Normal</td>
</tr>
<tr>
<td>Discrete</td>
<td>Normal</td>
</tr>
<tr>
<td>Continuous</td>
<td>Normal</td>
</tr>
<tr>
<td><strong>Non-parametric</strong></td>
<td></td>
</tr>
<tr>
<td>Two valued</td>
<td>Continuous</td>
</tr>
<tr>
<td>Discrete</td>
<td>Continuous</td>
</tr>
<tr>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td><strong>Contingency tests</strong></td>
<td></td>
</tr>
<tr>
<td>Two valued</td>
<td>Discrete</td>
</tr>
<tr>
<td>Discrete</td>
<td>Discrete</td>
</tr>
<tr>
<td>Continuous</td>
<td>Discrete</td>
</tr>
</tbody>
</table>
9.4 Evaluation through user participation

Example of non-parametric statistics

We will not see an example of the use of non-parametric statistics later, so we will go through a small example here. Imagine we had the following data for response times under two conditions:

- Condition A: 33, 42, 25, 79, 52
- Condition B: 87, 65, 92, 93, 91, 55

We gather the data together and sort them into order: 25, 33, 42, . . . , 92, 93. We then substitute for each value its rank in the list: 25 becomes 1, 33 becomes 2, etc. The transformed data are then

- Condition A: 2, 3, 1, 7, 4
- Condition B: 8, 6, 10, 11, 9, 5

Tests are then carried out on the data. For example, to test whether there is any difference between the two conditions we can use the Wilcoxon test. To do this, we take each condition and calculate the sum of ranks, and subtract the least value it could have (that is, $1 + 2 + 3 + 4 + 5 = 15$ for condition A, $1 + 2 + 3 + 4 + 5 + 6 = 21$ for condition B), giving the statistic $U$:

<table>
<thead>
<tr>
<th>rank sum</th>
<th>least</th>
<th>$U$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition A: $(2 + 3 + 1 + 7 + 4)$</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Condition B: $(8 + 6 + 10 + 11 + 9 + 5)$</td>
<td>21</td>
<td>28</td>
</tr>
</tbody>
</table>

In fact, the sum of these two $U$ statistics, $2 + 28 = 30$, is the product of the number of data values in each condition $5 \times 6$. This will always happen and so one can always get away with calculating only one of the $U$. Finally, we then take the smaller of two $U$ values and compare it with a set of critical values in a book of statistical tables, to see if it is unusually small. The table is laid out dependent on the number of data values in each condition (five and six). The critical value at the 5% level turns out to be 3. As the smallest statistic is smaller than this, we can reject the null hypothesis and conclude that there is likely to be a difference between the conditions. To be precise, it says that there is only a 1 in 20 (5%) chance that the data happened by chance. In fact the test is right – the authors constructed random data in the range 1–100 and then subtracted 10 from each of the values in condition A.

An example: evaluating icon designs

Imagine you are designing a new interface to a document-processing package, which is to use icons for presentation. You are considering two styles of icon design and you wish to know which design will be easier for users to remember. One set of icons uses naturalistic images (based on a paper document metaphor), the other uses abstract images (see Figure 9.3). How might you design an experiment to help you decide which style to use?

The first thing you need to do is form a hypothesis: what do you consider to be the likely outcome? In this case, you might expect the natural icons to be easier to recall since they are more familiar to users. We can therefore form the following hypothesis:
Users will remember the natural icons more easily than the abstract ones.

The null hypothesis in this case is that there will be no difference between recall of the icon types.

This hypothesis clearly identifies the independent variable for our experiment: we are varying the style of icon. The independent variable has two levels: natural and abstract. However, when we come to consider the dependent variable, things are not so obvious. We have expressed our hypothesis in terms of users being able to remember more easily. How can we measure this? First we need to clarify exactly what we mean by the phrase more easily: are we concerned with the user’s performance in terms of accurate recall or in terms of speed, for example, or are we looking at more subjective measures like user preference? In this example, we will assume that the speed at which a user can accurately select an icon is an indication of how easily it is remembered. Our dependent variables are therefore the number of mistakes in selection and the time taken to select an icon.

Of course, we need to control the experiment so that any differences we observe are clearly attributable to the independent variable, and so that our measurements of the dependent variables are comparable. To do this, we provide an interface that is identical in every way except for the icon design, and a selection task that can be repeated for each condition. The latter could be either a naturalistic task (such as producing a document) or a more artificial task in which the user has to select the appropriate icon to a given prompt. The second task has the advantage that it is more controlled (there is little variation between users as to how they will perform the task) and it can be varied to avoid transfer of learning. Before performing the selection task, the users will be allowed to learn the icons in controlled conditions: for example, they may be given a fixed amount of time to learn the icon meanings.

The next stage is to decide upon an experimental method. This may depend on the participants that are available, but in this case we will assume that we have sufficient participants from the intended user group. A between-subjects experiment would remove any learning effect for individual participants, but it would be more difficult
9.4 Evaluation through user participation

... to control for variation in learning style between participants. On balance, therefore, a within-subjects design is preferred, with order of presentation controlled.

So all that remains is to finalize the details of our experiment, given the constraints imposed by these choices. We devise two interfaces composed of blocks of icons, one for each condition. The user is presented with a task (say ‘delete a document’) and is required to select the appropriate icon. The selection task comprises a set of such presentations. In order to avoid learning effects from icon position, the placing of icons in the block can be randomly varied on each presentation. Each user performs the selection task under each condition. In order to avoid transfer of learning, the users are divided into two groups with each group taking a different starting condition. For each user, we measure the time taken to complete the task and the number of errors made.

Finally, we must analyze our results. Table 9.2 shows a possible set of results for ten participants. The first five had the abstract icons presented first (order AN), and the last five had the natural icons presented first (order NA). Columns (1) and (2) in the table show the completion times for the task using natural and abstract icons respectively. As the times are the result of lots of presentations, we will assume that they are normally distributed. The main independent variable, the icon type, is two valued, suggesting we can use a simple difference of means with Student’s t test (Table 9.1). In fact, because we have used a within-subjects design, there is another independent variable we have to take into account – the participant. This means we...

Table 9.2 Example experimental results – completion times

<table>
<thead>
<tr>
<th>Participant number</th>
<th>Presentation order</th>
<th>(1) Natural (s)</th>
<th>(2) Abstract (s)</th>
<th>(3) Participant mean</th>
<th>(4) Natural (1)–(3)</th>
<th>(5) Abstract (2)–(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AN</td>
<td>656</td>
<td>702</td>
<td>679</td>
<td>−23</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>AN</td>
<td>259</td>
<td>339</td>
<td>299</td>
<td>−40</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>AN</td>
<td>612</td>
<td>658</td>
<td>635</td>
<td>−23</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>AN</td>
<td>609</td>
<td>645</td>
<td>627</td>
<td>−18</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>AN</td>
<td>1049</td>
<td>1129</td>
<td>1089</td>
<td>−40</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>NA</td>
<td>1135</td>
<td>1179</td>
<td>1157</td>
<td>−22</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>NA</td>
<td>542</td>
<td>604</td>
<td>573</td>
<td>−31</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>NA</td>
<td>495</td>
<td>551</td>
<td>523</td>
<td>−28</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>NA</td>
<td>905</td>
<td>893</td>
<td>899</td>
<td>6</td>
<td>−6</td>
</tr>
<tr>
<td>10</td>
<td>NA</td>
<td>715</td>
<td>803</td>
<td>759</td>
<td>−44</td>
<td>44</td>
</tr>
<tr>
<td>mean (μ)</td>
<td></td>
<td>698</td>
<td>750</td>
<td>724</td>
<td>−26</td>
<td>26</td>
</tr>
<tr>
<td>s.d. (σ)</td>
<td>s.e.d. 117</td>
<td>265</td>
<td>259</td>
<td>262</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Student’s t</td>
<td>0.32 (n.s.)</td>
<td></td>
<td></td>
<td></td>
<td>5.78 (p&lt;1%, two tailed)</td>
<td></td>
</tr>
</tbody>
</table>

1 Note that these are fabricated results for the purposes of exposition and this is a rather small sample set for real purposes.
have more than one discrete independent variable, and referring again to Table 9.1, we see that this implies we should use analysis of variance (ANOVA). A full analysis of variance is quite complex, and is ideally done with the aid of a statistics package. However, this experiment is particularly simple, so we can use a simplified analysis.

Look at columns (2) and (3) of Table 9.2. The completion times range from less than 5 minutes (participant 2) to nearly 20 minutes (participant 6), showing a wide variation between individuals. This wide variation emphasizes the importance of the within-subjects design. To see how this affects the results, we will first try to analyze them ignoring the fact that each participant performed under each condition. At the end of the table, the mean and standard deviation have been calculated for each condition. These means can then be compared using Student’s t test. The difference between the means is 52 seconds, but the standard error of the difference (s.e.d.) is 117. This is calculated as follows:

\[ \text{s.e.d.} = \sqrt{\frac{\sigma_N^2}{n_N} + \frac{\sigma_A^2}{n_A}} = \sqrt{\frac{265^2}{10} + \frac{259^2}{10}} = 117.2 \]

where \( \sigma_N \) and \( \sigma_A \) are the standard deviations (s.d.) of the two conditions, and \( n_N \) and \( n_A \) are the number of data items in each condition (10 in each). The s.e.d. is a measure of the expected variability of the difference between the means, and as we see the actual difference is well within this random variation. Testing the ratio 52/117 against tables of Student’s t distribution indeed shows that this is not significant.

However, if we glance down the table, we see that in almost every case the time taken with the abstract icons is greater than the time taken for the natural icons. That is, the data seem to support our claim that natural icons are better than abstract ones, but the wide variation between individuals has hidden the effect.

A more sophisticated analysis, a special case of ANOVA, can expose the difference. Looking back at the table, column (3) shows, for each participant, the average of the time they took under the two conditions. This participant mean is then subtracted from the data for each condition, yielding columns (4) and (5). These columns show the effect of the icon design once the differences between participants have been removed. The two columns are redundant as they always add up to zero. They show that in all but one case (participant 9) the natural icons are faster than the abstract ones.

Even a non-parametric test would show this as a significant difference at the 5% level, but the use of a t test is more precise. We can take either column and see that the column average 26 is much greater than the standard error (14.4/\( \sqrt{10} \)). The ratio (mean/s.e.) is compared with the Student’s t table (in statistical tables) using nine degrees of freedom (10 values minus 1 for the mean), and is indeed far greater than the 1% level (3.250); that is, the likelihood of getting our results by chance is less than 1 in 100. So, we reject the null hypothesis that there is no difference and conclude that natural icons are more easily remembered than abstract ones.

In fact, the last statement is not quite correct. What we have shown is that in this experiment natural icons are more rapidly remembered. Possibly, if we go on to
analyze the errors, these may present a different story. If these error figures were quite large (say 15 errors or more per condition), then we may be able to assume these are normal and use ANOVA. If not, we can either use non-parametric tests, or make use of special tests based on the binomial distribution. We will not perform these analyses here. Possibly, looking at the errors we may find that the natural icons have more errors – it could well be that they are more rapidly, but less accurately, remembered. It is always worth keeping in mind the difference between the intended purpose of the experiment (to see which is better remembered) and the actual measurements (speed and accuracy).

Finally, one ought to look carefully at the experimental results to see whether there is any other effect that might confuse the results. The graphical presentation of results will help with this, possibly highlighting odd clumps in the data or other irregularities. In this experiment we may want to check to see if there has been any significant transfer effect between the first and second condition for each participant. The second set may be faster as the participants are more practiced, or possibly the second set may be slower as learning a second set of icons may be confusing. This will not matter if the effect is uniform – say they always are 15 seconds slower on the second test. But there may be systematic effects. For example, seeing the natural icons first might make it more difficult to learn the abstract ones, but not vice versa. If this were the case, our observed effect may be about the interference between the icon sets, rather than that one is better than the other.

**Worked exercise**  
*Design an experiment to test whether adding color coding to an interface will improve accuracy. Identify your hypothesis, participant group, dependent and independent variables, experimental design, task and analysis approach.*

**Answer**  
The following is only an example of the type of experiment that might be devised.

**Participants**  
Taken from user population.

**Hypothesis**  
Color coding will make selection more accurate.

**IV**  (Independent Variable) Color coding.

**DV**  (Dependent Variable) Accuracy measured as number of errors.

**Design**  
Between-groups to ensure no transfer of learning (or within-groups with appropriate safeguards if participants are scarce).

**Task**  
The interfaces are identical in each of the conditions, except that, in the second, color is added to indicate related menu items. Participants are presented with a screen of menu choices (ordered randomly) and verbally told what they have to select. Selection must be done within a strict time limit when the screen clears. Failure to select the correct item is deemed an error. Each presentation places items in new positions. Participants perform in one of the two conditions.

**Analysis**  
*t* test.
Studies of groups of users

So far we have considered the experimental evaluation of single-user systems. Experiments to evaluate elements of group systems bring additional problems. Given the complexities of human–human communication and group working, it is hardly surprising that experimental studies of groups and of groupware are more difficult than the corresponding single-user experiments already considered. For the purpose of discussion, let us assume that we are evaluating a shared application with video connections between the participants and consider some of the problems we will encounter.

The participant groups

To organize, say, 10 experiments of a single-user system requires 10 participants. For an experiment involving groups of three, we will, of course, need 30 participants for the same number of experiments. In addition, experiments in group working are often longer than the single-user equivalents as we must allow time for the group to ‘settle down’ and some rapport to develop. This all means more disruption for participants and possibly more expense payments.

Arranging a mutually convenient slot when both participants and the equipment are available is no mean feat. Often the workstations being used in the experiment will be colleagues’ personal systems, so we are trying to accommodate at least six people, not to mention the experimenters themselves.

Not surprisingly, many reports of group working involve only three or four groups. This is obviously a problem for statistical purposes, but not the primary obstacle.

The experimental task

Choosing a suitable task is also difficult. We may want to test a variety of different task types: creative, structured, information passing, and so on. Also, the tasks must encourage active cooperation, either because the task requires consensus, or because information and control is distributed among the participants. Obviously, the task also depends on the nature of the groupware system: if it has several available channels, we want to encourage broad use. For example, in the case of shared application with video, it should not be possible (or at least not easy) to perform the task without using the application, otherwise we are simply investigating video conferencing.

Creative tasks such as ‘write a short report on . . .’ or ‘write a research proposal’ are often effective, in that the participants must reach agreement, and can be asked to produce their final report using the shared application. Design tasks are also used. For instance, in one experiment, users of the York Conferencer system (see Figure 14.2 in Section 14.4) were asked to redesign a bank layout. A picture of the current layout was used as a background for the spatially arranged electronic pinboard, and the participants made use of this to arrange comments and suggestions close to the features they referred to.

Decision games, as used in management courses, are designed to test and train cooperative activity. They often rely for their success on group coordination, not individual ability. An example of this is the desert survival task, where the participants are told that they have crashed in the desert. They are given a list of items to rank.
in order of importance for their survival: knife, plastic sheet, etc. The participants must produce one list between them, a single knowledgeable participant cannot ‘go it alone’. A computerized version of the game of Diplomacy has also been used (see Figure 14.5 in Section 14.4) as it includes aspects of conflict as well as cooperation.

Finally, time-critical simulated process control tasks force a higher pace of interaction as the participants control different parts of the model. An example of this is ARKola [147], a simulated bottling plant, which was used at Xerox PARC to investigate the importance of background noise in complex cooperative control tasks.

Often the chosen task will require extra implementation effort, and in the case of games this may be extensive. This is obviously a strong factor in the choice of a suitable task.

Data gathering  Even in a single-user experiment we may well use several video cameras as well as direct logging of the application. In a group setting this is replicated for each participant. So for a three-person group, we are trying to synchronize the recording of six or more video sources and three keystroke logs. To compound matters, these may be spread over different offices, or even different sites. The technical problems are clearly enormous. Four-into-one video recording is possible, storing a different image in each quadrant of the screen, but even this is insufficient for the number of channels we would like.

One way round this is to focus on the participants individually, recording, for each one, the video images that are being relayed as part of the system (assuming there is a video connection) and the sounds that the participant hears. These can then be synchronized with the particular participant’s keystrokes and additional video observations. Thus, we can recreate the situation as it appeared to the participant. From this recording, we may not be able to interpret the other participants’ actions, but at least we have a complete record for one.

Given sufficient recording equipment, this can be repeated for each participant. Happily, the level of synchronization required between participants is not as great as that required for each one individually. One can simply start the recorders’ clocks at the same time, but not worry about sub-second accuracy between participants. The important thing is that we can, as it were, relive the experience for each individual.

Analysis  In true experimental tradition, we would like to see statistical differences between experimental conditions. We saw earlier that individual differences made this difficult in single-user experiments. If anything, group variation is more extreme. Given randomly mixed groups, one group will act in a democratic fashion; in another, a particular pair will dominate discussion; in a third, one of the participants will act as coordinator, filtering the others’ contributions. The level of variation is such that even catastrophic failures under one condition and fabulous successes in another may not always lead to statistically significant results.

As an example of this, imagine we have some quantitative measure of quality of output. We will almost certainly have to use non-parametric tests, so imagine we have found that all the groups under one condition obtained higher scores than any group under the other condition. We would need at least four in each condition to
obtain even 5% significance (one tailed). If our results were only slightly less good, say one of the generally better groups performed poorly, we would then require at least five in each condition.

Now this example only considered one condition, and assumed the best possible results. In general, we would expect that the spread between groups within conditions would be greater, and we may want to test more conditions at once. Our 10 groups will have to increase rapidly to stand any chance of statistically significant results. However, we saw above that even gathering 10 experimental groups is a significant problem.

There are three possible solutions to this problem. First, one can use within-group experiments, having each group work under several conditions. We have, of course, the normal problems of such analysis, transfer effects and the like, but we also have more chance of cancelling out the group effect. Secondly, we can look to a micro-analysis of features like gaps between utterances. Such measures are more likely to fit a standard distribution, and thus one can use more powerful parametric tests. In addition, they may be more robust to the large-scale social differences between groups.

The third solution is to opt for a more anecdotal analysis, looking for critical incidents – for example, interesting events or breakdowns – in the data. The concepts and methods for analyzing conversation in Chapter 14 can be used to drive such an analysis. The advantage of this approach is that instead of regarding group differences as a ‘problem’, they can be included in the analysis. That is, we can begin to look for the systematic ways in which different group structures interact with the communications media and applications they use.

Of course, experiments can be analyzed using both quantitative and qualitative methods. Indeed, any detailed anecdotal analysis of the logs will indicate fruitful measures for statistical analysis. However, if the number of experimental groups is limited, attempts at controlled experiments may not be productive, and may effectively ‘waste’ the groups used in the control. Given the high costs of group-working experiments, one must choose conditions that are likely to give interesting results, even if statistical analysis proves impossible.

Field studies with groups There are, of course, problems with taking groups of users and putting them in an experimental situation. If the groups are randomly mixed, then we are effectively examining the process of group formation, rather than that of a normal working group. Even where a pre-existent group is used, excluding people from their normal working environment can completely alter their working patterns. For a new system, there may be no ‘normal’ workplace and all we can do is produce an artificial environment. However, even with a new system we have the choice of producing a ‘good’ experiment or a naturalistic setting. The traditions of experimental psychology are at odds with those of more qualitative sociological analysis.

It can be argued that group work can only be studied in context. Moving out of the real situation will alter the very nature of the work that is studied. Alternative approaches from the social sciences, such as ethnography, have therefore become popular, particularly in relation to studying group interaction. Ethnography involves
very detailed recording of the interactions between people, their environment and each other. The ethnographer attempts to remain outside the situation being studied and does not impose a particular viewpoint on what is observed. This is very different from the experimental perspective with its hypothesis testing. Ethnography is discussed in more detail in Chapter 13.

9.4.3 Observational techniques

A popular way to gather information about actual use of a system is to observe users interacting with it. Usually they are asked to complete a set of predetermined tasks, although, if observation is being carried out in their place of work, they may be observed going about their normal duties. The evaluator watches and records the users’ actions (using a variety of techniques – see below). Simple observation is seldom sufficient to determine how well the system meets the users’ requirements since it does not always give insight into the their decision processes or attitude. Consequently users are asked to elaborate their actions by ‘thinking aloud’. In this section we consider some of the techniques used to evaluate systems by observing user behavior.

Think aloud and cooperative evaluation

Think aloud is a form of observation where the user is asked to talk through what he is doing as he is being observed; for example, describing what he believes is happening, why he takes an action, what he is trying to do.

Think aloud has the advantage of simplicity; it requires little expertise to perform (though can be tricky to analyze fully) and can provide useful insight into problems with an interface. It can also be employed to observe how the system is actually used. It can be used for evaluation throughout the design process, using paper or simulated mock-ups for the earlier stages. However, the information provided is often subjective and may be selective, depending on the tasks provided. The process of observation can alter the way that people perform tasks and so provide a biased view. The very act of describing what you are doing often changes the way you do it – like the joke about the centipede who was asked how he walked . . .

A variation on think aloud is known as cooperative evaluation [240] in which the user is encouraged to see himself as a collaborator in the evaluation and not simply as an experimental participant. As well as asking the user to think aloud at the beginning of the session, the evaluator can ask the user questions (typically of the ‘why?’ or ‘what-if?’ type) if his behavior is unclear, and the user can ask the evaluator for clarification if a problem arises. This more relaxed view of the think aloud process has a number of advantages:

- the process is less constrained and therefore easier to learn to use by the evaluator
- the user is encouraged to criticize the system
- the evaluator can clarify points of confusion at the time they occur and so maximize the effectiveness of the approach for identifying problem areas.
The usefulness of think aloud, cooperative evaluation and observation in general is largely dependent on the effectiveness of the recording method and subsequent analysis. The record of an evaluation session of this type is known as a protocol, and there are a number of methods from which to choose.

**Protocol analysis**

Methods for recording user actions include the following:

**Paper and pencil** This is primitive, but cheap, and allows the analyst to note interpretations and extraneous events as they occur. However, it is hard to get detailed information, as it is limited by the analyst’s writing speed. Coding schemes for frequent activities, developed during preliminary studies, can improve the rate of recording substantially, but can take some time to develop. A variation of paper and pencil is the use of a notebook computer for direct entry, but then one is limited to the analyst’s typing speed, and one loses the flexibility of paper for writing styles, quick diagrams and spatial layout. If this is the only recording facility available then a specific note-taker, separate from the evaluator, is recommended.

**Audio recording** This is useful if the user is actively ‘thinking aloud’. However, it may be difficult to record sufficient information to identify exact actions in later analysis, and it can be difficult to match an audio recording to some other form of protocol (such as a handwritten script).

**Video recording** This has the advantage that we can see what the participant is doing (as long as the participant stays within the range of the camera). Choosing suitable camera positions and viewing angles so that you get sufficient detail and yet keep the participant in view is difficult. Alternatively, one has to ask the participant not to move, which may not be appropriate for studying normal behavior! For single-user computer-based tasks, one typically uses two video cameras, one looking at the computer screen and one with a wider focus including the user’s face and hands. The former camera may not be necessary if the computer system is being logged.

**Computer logging** It is relatively easy to get a system automatically to record user actions at a keystroke level, particularly if this facility has been considered early in the design. It can be more difficult with proprietary software where source code is not available (although some software now provides built-in logging and playback facilities). Obviously, computer logging only tells us what the user is doing on the system, but this may be sufficient for some purposes. Keystroke data are also ‘semantics free’ in that they only tell us about the lowest-level actions, not why they were performed or how they are structured (although slight pauses and gaps can give clues). Direct logging has the advantages that it is cheap (except in terms of disk storage), unobtrusive and can be used for longitudinal studies, where we look at one or more users over periods of weeks or months. Technical
problems with it are that the sheer volume of data can become unmanageable without automatic analysis, and that one often has to be careful to restore the state of the system (file contents, etc.) before replaying the logs.

**User notebooks** The participants themselves can be asked to keep logs of activity/problems. This will obviously be at a very coarse level – at most, records every few minutes and, more likely, hourly or less. It also gives us ‘interpreted’ records, which have advantages and problems. The technique is especially useful in longitudinal studies, and also where we want a log of unusual or infrequent tasks and problems.

In practice, one uses a mixture of recording methods as they complement one another. For instance, we may keep a paper note of special events and circumstances, even when we have more sophisticated audio/visual recording. Similarly, we may use separate audio recording, even where a video recorder is used, as the quality of specialist audio recording is better than most built-in video microphones. In addition, we may use stereo audio recording, which helps us to locate out-of-screen noises. If one is using a collection of different sources, say audio, video (×2) and keystroke logging, there is considerable difficulty in synchronizing them during play-back. Most video recorders can superimpose an on-screen clock, which can help, but ideally one uses specialized equipment that can automatically synchronize the different sources, possibly merging several video displays onto a single screen. Unfortunately, this sort of equipment is often only available in specialized laboratories.

With both audio and video recording, a major problem is *transcription*. Typing a transcript from a tape is not the same as taped dictation. The conversation will typically consist of part or broken sentences, mumbled words and inarticulated noises. In addition, the transcript will need annotating with the different voices (which may only be clear from context) and with non-verbal items such as pauses, emphases, equipment noises, phones ringing, etc. A good audio-typist will be accustomed to completing mumbled words and correcting ungrammatical sentences – typing *exactly* what is recorded may prove difficult. Some practitioners say that the use of typists is not good practice anyway as the analyst will miss many nuances that are lost in the written transcript. However, if you wish to produce your own typed transcripts from tape, a course in touch-typing is highly recommended.

For video transcription, professional typists are not an option; there is no standard way of annotating video recordings, and the analyst must invent notations to suit the particular circumstances. The scale of this task is not to be underestimated. It is common to talk to practitioners who have tens or hundreds of hours of video recording, but have only analyzed tiny fragments in detail. Of course, the fragments will have been chosen after more extensive perusal of the material, but it certainly removes any idea of comprehensive coverage.

Coding can be introduced to indicate particular events but it is sometimes difficult to determine a suitable coding scheme and to use this consistently, particularly if
more than one person is doing the coding. A range of transcribers should therefore test coding schemes to ensure that they are being interpreted appropriately for a particular data set.

**Automatic protocol analysis tools**

Analyzing protocols, whether video, audio or system logs, is time consuming and tedious by hand. It is made harder if there is more than one stream of data to synchronize. One solution to this problem is to provide automatic analysis tools to support the task. These offer a means of editing and annotating video, audio and system logs and synchronizing these for detailed analysis.

_EVA (Experimental Video Annotator)_ is a system that runs on a multimedia workstation with a direct link to a video recorder [220]. The evaluator can devise a set of buttons indicating different events. These may include timestamps and snapshots, as well as notes of expected events and errors. The buttons are used within a recording session by the evaluator to annotate the video with notes. During the session the user works at a workstation and is recorded, using video and perhaps audio and system logging as well. The evaluator uses the multimedia workstation running EVA. On the screen is the live video record and a view of the user’s screen (see Figure 9.4). The evaluator can use the buttons to tag interesting events as they occur and can record additional notes using a text editor. After the session, the evaluator can ask to review the tagged segments and can then use these and standard video controls to search the information. Links can be made with other types of record such as audio and system logs. A system such as EVA alleviates the burden of video analysis but it is not without its problems. The act of tagging and annotating events can prevent the evaluator from actually concentrating on the events themselves. This may mean that events are missed or tagged late.

Commercial systems such as Observer Pro from Noldus have similar functionality to EVA; portable versions are now available for use in field studies (www.noldus.com).

![Figure 9.4](image-url)  
**Figure 9.4** EVA: an automatic protocol analysis tool. Source: Wendy Mackay
9.4 Evaluation through user participation

The Workplace project at Xerox PARC [348] also includes a system to aid protocol analysis. The main emphasis here is to support the analysis of synchronized information from different data streams, such as video, audio, notes and diagrams. Each data stream is viewed in an aligned display so that it is possible to compare the records of each for a given point in the interaction. The alignment may be based on timestamps or on an event or action and is implemented using hypertext links.

A third example is DRUM [223], which also provides video annotation and tagging facilities. DRUM is part of the MUSiC (Measuring the Usability of Systems in Context/Metrics for Usability Standards in Computing) toolkit, which supports a complete methodology for evaluation, based upon the application of usability metrics on analytic metrics, cognitive workload, performance and user satisfaction. DRUM is concerned particularly with measuring performance. The methodology provides a range of tools as well as DRUM, including manuals, questionnaires, analysis software and databases.

Systems such as these are extremely important as evaluation tools since they offer a means of handling the data that are collected in observational studies and allowing a more systematic approach to the analysis. The evaluator’s task is facilitated and it is likely that more valuable observations will emerge as a result.

Post-task walkthroughs

Often data obtained via direct observation lack interpretation. We have the basic actions that were performed, but little knowledge as to why. Even where the participant has been encouraged to think aloud through the task, the information may be at the wrong level. For example, the participant may say ‘and now I’m selecting the undo menu’, but not tell us what was wrong to make undo necessary. In addition, a think aloud does not include information such as alternative, but not pursued, actions.

A walkthrough attempts to alleviate these problems, by reflecting the participants’ actions back to them after the event. The transcript, whether written or recorded, is replayed to the participant who is invited to comment, or is directly questioned by the analyst. This may be done straightaway, when the participant may actually remember why certain actions were performed, or after an interval, when the answers are more likely to be the participant’s post hoc interpretation. (In fact, interpretation is likely even in the former case.) The advantage of a delayed walkthrough is that the analyst has had time to frame suitable questions and focus on specific incidents. The disadvantage is a loss of freshness.

There are some circumstances when the participant cannot be expected to talk during the actual observation, for instance during a critical task, or when the task is too intensive. In these circumstances, the post-task walkthrough is the only way to obtain a subjective viewpoint on the user’s behavior. There is also an argument that it is preferable to minimize non-task-related talk during direct observation in order to get as natural a performance as possible. Again this makes the walkthrough essential.
9.4.4 Query techniques

Another set of evaluation techniques relies on asking the user about the interface directly. Query techniques can be useful in eliciting detail of the user’s view of a system. They embody the philosophy that states that the best way to find out how a system meets user requirements is to ‘ask the user’. They can be used in evaluation and more widely to collect information about user requirements and tasks. The advantage of such methods is that they get the user’s viewpoint directly and may reveal issues that have not been considered by the designer. In addition, they are relatively simple and cheap to administer. However, the information gained is necessarily subjective, and may be a ‘rationalized’ account of events rather than a wholly accurate one. Also, it may be difficult to get accurate feedback about alternative designs if the user has not experienced them, which limits the scope of the information that can be gleaned. However, the methods provide useful supplementary material to other methods. There are two main types of query technique: interviews and questionnaires.

Interviews

Interviewing users about their experience with an interactive system provides a direct and structured way of gathering information. Interviews have the advantages that the level of questioning can be varied to suit the context and that the evaluator can probe the user more deeply on interesting issues as they arise. An interview will usually follow a top-down approach, starting with a general question about a task and progressing to more leading questions (often of the form ‘why?’ or ‘what if?’) to elaborate aspects of the user’s response.

Interviews can be effective for high-level evaluation, particularly in eliciting information about user preferences, impressions and attitudes. They may also reveal problems that have not been anticipated by the designer or that have not occurred under observation. When used in conjunction with observation they are a useful means of clarifying an event (compare the post-task walkthrough).

In order to be as effective as possible, the interview should be planned in advance, with a set of central questions prepared. Each interview is then structured around these questions. This helps to focus the purpose of the interview, which may, for instance, be to probe a particular aspect of the interaction. It also helps to ensure a base of consistency between the interviews of different users. That said, the evaluator may, of course, choose to adapt the interview form to each user in order to get the most benefit: the interview is not intended to be a controlled experimental technique.

Questionnaires

An alternative method of querying the user is to administer a questionnaire. This is clearly less flexible than the interview technique, since questions are fixed in advance,
and it is likely that the questions will be less probing. However, it can be used to reach a wider participant group, it takes less time to administer, and it can be analyzed more rigorously. It can also be administered at various points in the design process, including during requirements capture, task analysis and evaluation, in order to get information on the user’s needs, preferences and experience.

Given that the evaluator is not likely to be directly involved in the completion of the questionnaire, it is vital that it is well designed. The first thing that the evaluator must establish is the purpose of the questionnaire: what information is sought? It is also useful to decide at this stage how the questionnaire responses are to be analyzed. For example, do you want specific, measurable feedback on particular interface features, or do you want the user’s impression of using the interface?

There are a number of styles of question that can be included in the questionnaire. These include the following:

**General** These are questions that help to establish the background of the user and his place within the user population. They include questions about age, sex, occupation, place of residence, and so on. They may also include questions on previous experience with computers, which may be phrased as open-ended, multi-choice or scalar questions (see below).

**Open-ended** These ask the user to provide his own unprompted opinion on a question, for example ‘Can you suggest any improvements to the interface?’. They are useful for gathering general subjective information but are difficult to analyze in any rigorous way, or to compare, and can only be viewed as supplementary. They are also most likely to be missed out by time-conscious respondents! However, they may identify errors or make suggestions that have not been considered by the designer. A special case of this type is where the user is asked for factual information, for example how many commands were used.

**Scalar** These ask the user to judge a specific statement on a numeric scale, usually corresponding to a measure of agreement or disagreement with the statement. For example,

<table>
<thead>
<tr>
<th>It is easy to recover from mistakes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
</tr>
</tbody>
</table>

The granularity of the scale varies: a coarse scale (say, from 1 to 3) gives a clear indication of the meaning of the numbers (disagree, neutral and agree). However, it gives no room for varying levels of agreement, and users may therefore be tempted to give neutral responses to statements that they do not feel strongly about but with which they mildly disagree or agree. A very fine scale (say 1 to 10) suffers from the opposite problem: the numbers become difficult to interpret in a consistent way. One user will undoubtedly interpret the scale differently from another. A middle ground is therefore advisable. Scales of 1 to 5 or 1 to 7 have been used effectively. They are fine enough to allow users to differentiate adequately but still retain clarity in meaning. It can help to provide an indication
of the meaning of intermediate scalar values. Odd-numbered scales are used most often but it is possible to use even-numbered scales (e.g. 1–6) if the ‘neutral’ option is not wanted. This does not allow for fence sitting – except decisively by selecting $3^{1/2}$.

**Multi-choice**  Here the respondent is offered a choice of explicit responses, and may be asked to select only one of these, or as many as apply. For example,

- How do you most often get help with the system (tick one)?
  - Online manual
  - Contextual help system
  - Command prompt
  - Ask a colleague

- Which types of software have you used (tick all that apply)?
  - Word processor
  - Database
  - Spreadsheet
  - Expert system
  - Online help system
  - Compiler

These are particularly useful for gathering information on a user’s previous experience. A special case of this type is where the offered choices are ‘yes’ or ‘no’.

**Ranked**  These place an ordering on items in a list and are useful to indicate a user’s preferences. For example,

- Please rank the usefulness of these methods of issuing a command (1 most useful, 2 next, 0 if not used).
  - Menu selection
  - Command line
  - Control key accelerator

These question types are all useful for different purposes, as we have noted. However, in order to reduce the burden of effort on the respondent, and so encourage a high response rate amongst users, it is best to use closed questions, such as scalar, ranked or multi-choice, as much as possible. These provide the user with alternative responses and so reduce the effort required. They also have the advantage of being easier to analyze. Responses can be analyzed in a number of ways, from determining simple percentages for each response, to looking at correlations and factor analysis. For more detail on available methods the reader is referred to the recommended reading list at the end of the chapter.

Whatever type of questionnaire is planned, it is wise to carry out a pilot study. This allows any problems with the questionnaire design to be ironed out before the questionnaire is distributed to potentially hundreds of users! The questionnaire should be tested on four or five users to see if the questions are comprehensible and the results are as expected and can be used in the manner intended. If users seem to
be misunderstanding a particular question, it can then be rephrased (and retested) before the final version is sent out.

Distribution of questionnaires can also be problematic. It is important that the respondents are representative of the user population but you also need to ensure that you are able to reach as many potential respondents as possible. Return rate for questionnaires is quite low (often 25–30%) so many more need to be sent out to get a reasonable return. Questionnaires should ideally be distributed to a random subset of the user population. So, for example, if the population is all workers in a company, one may choose to send a questionnaire to every fourth person on an alphabetically ordered personnel list. However, questionnaires are now often distributed via the internet, either by email, where potential respondents can be selected randomly, or via a website, where the respondents are limited to those who visit the site and who may not be representative. In practice, questionnaire respondents are self-selecting anyway, in that only those who choose to respond are included in the study; if the questionnaire is designed to capture demographic information about each respondent then the level of representativeness (or otherwise) can be determined from the responses.

Worked exercise

You have been asked to compare user performance and preferences with two different learning systems, one using hypermedia (see Chapter 21), the other sequential lessons. Design a questionnaire to find out what the users think of the system. How would you go about comparing user performance with these two systems?

Answer

Assume that all users have used both systems.

Questionnaire

Consider the following questions in designing the questionnaire:

- what information is required?
- how is the questionnaire to be analyzed?

You are particularly interested in user preferences so questions should focus on different aspects of the systems and try to measure levels of satisfaction. The use of scales will make responses for each system easier to compare.

Table 9.3 shows an example questionnaire.

To test performance you would design an experiment where two groups of participants learn the same material using the two systems, and test how well they have learned (using a standard measurable test).

Participants  User group

IV (Independent Variable) Style of learning system

DV (Dependent Variable) Performance (measured as test score)

Design  Between-subjects design
Table 9.3  Questionnaire to compare two systems

**PART I**: Repeat for each system
Indicate your agreement or disagreement with the following statements. (1 indicates complete disagreement and 5 complete agreement.)

- The system tells me what to do at every point.
  - Disagree 1 2 3 4 5 Agree
- It is easy to recover from mistakes.
  - Disagree 1 2 3 4 5 Agree
- It is easy to get help when needed.
  - Disagree 1 2 3 4 5 Agree
- I always know what the system is doing.
  - Disagree 1 2 3 4 5 Agree
- I always know where I am in the training material.
  - Disagree 1 2 3 4 5 Agree
- I have learned the material well using the system.
  - Disagree 1 2 3 4 5 Agree
- I could have learned the material more effectively using a book.
  - Disagree 1 2 3 4 5 Agree
- I always know how well I am doing.
  - Disagree 1 2 3 4 5 Agree

**PART II**: Comparing both systems:

- Which system (choose 1) was most:
  - Helpful to use A B
  - Efficient to use A B
  - Enjoyable to use A B

Please add any comments you have about either system:

---

### 9.4.5 Evaluation through monitoring physiological responses

One of the problems with most evaluation techniques is that we are reliant on observation and the users telling us what they are doing and how they are feeling. What if we were able to measure these things directly? Interest has grown recently in the use of what is sometimes called objective usability testing, ways of monitoring physiological aspects of computer use. Potentially this will allow us not only to see more clearly exactly what users do when they interact with computers, but also to measure how they feel. The two areas receiving the most attention to date are eye tracking and physiological measurement.
Eye tracking has been possible for many years, but recent improvements in hardware and software have made it more viable as an approach to measuring usability. The original eye trackers required highly invasive procedures where eye caps were attached to the cornea under anaesthetic. Clearly inappropriate for usability testing! Modern systems vary: some use a head-mounted camera to monitor the eye, but the most sophisticated do not involve any contact between the equipment and the participant, with the camera and light sources mounted in desk units (see Figures 9.5, 9.6) [112].

Furthermore, there have been rapid improvements in the software available both for the control of eye-tracking equipment and the analysis and visualization of the large volumes of data it produces.

Eye movements are believed to reflect the amount of cognitive processing a display requires and, therefore, how easy or difficult it is to process [150]. So measuring not only where people look, but also their patterns of eye movement, may tell us which areas of a screen they are finding easy or difficult to understand. Eye movement measurements are based on fixations, where the eye retains a stable position for a period of time, and saccades, where there is rapid ballistic eye movement from one point of interest to another. There are many possible measurements related to usability evaluation including:

- **Number of fixations**   The more fixations the less efficient the search strategy.
- **Fixation duration**   Longer fixations may indicate difficulty with a display.
Scan path indicating areas of interest, search strategy and cognitive load. Moving straight to a target with a short fixation at the target is the optimal scan path but plotting scan paths and fixations can indicate what people look at, how often and for how long.

Eye tracking for usability is still very new and equipment is prohibitively expensive for everyday use. However, it is a promising technique for providing insights into what really attracts the eye in website design and where problem areas are in system use. More research is needed to interpret accurately the meaning of the various eye movement measurements, as well as to develop more accessible and robust equipment. But, given the potential for gathering new data measurements relatively unobtrusively, it is likely that eye tracking will become part of the standard equipment for usability laboratories in the coming few years.
Physiological measurements

As we saw in Chapter 1, emotional response is closely tied to physiological changes. These include changes in heart rate, breathing and skin secretions. Measuring these physiological responses may therefore be useful in determining a user’s emotional response to an interface [288, 363]. Could we determine which interaction events really cause a user stress or which promote relaxation?

Physiological measurement involves attaching various probes and sensors to the user (see Figure 9.7). These measure a number of factors:
Heart activity, indicated by blood pressure, volume and pulse. These may respond to stress or anger.

Activity of the sweat glands, indicated by skin resistance or galvanic skin response (GSR). These are thought to indicate levels of arousal and mental effort.

Electrical activity in muscle, measured by the electromyogram (EMG). These appear to reflect involvement in a task.

Electrical activity in the brain, measured by the electroencephalogram (EEG). These are associated with decision making, attention and motivation.

Figure 9.8 illustrates the output obtained from such measurements.

One of the problems with applying these measurements to interaction events is that it is not clear what the relationship between these events and measurements might be. For example, if increased pulse rate is observed during an interactive task, does that indicate frustration with the interface or stress at being unable to complete the task? How will physiological changes differ in response to discrete events or to continuous interface use? Is it possible to map patterns of physiological measurement to specific emotional states?

These are still research questions but the approach is interesting, as it offers a potential means of objectively capturing information about the user’s emotional state.
Choosing an evaluation method

As we have seen in this chapter, a range of techniques is available for evaluating an interactive system at all stages in the design process. So how do we decide which methods are most appropriate for our needs? There are no hard and fast rules in this – each method has its particular strengths and weaknesses and each is useful if applied appropriately. However, there are a number of factors that should be taken into account when selecting evaluation techniques. These also provide a way of categorizing the different methods so that we can compare and choose between them. In this final section we will consider these factors.

9.5.1 Factors distinguishing evaluation techniques

We can identify at least eight factors that distinguish different evaluation techniques and therefore help us to make an appropriate choice. These are:

- the stage in the cycle at which the evaluation is carried out
- the style of evaluation
- the level of subjectivity or objectivity of the technique
- the type of measures provided
- the information provided
- the immediacy of the response
- the level of interference implied
- the resources required.

Design vs. implementation

The first factor to affect our choice of evaluation method is the stage in the design process at which evaluation is required. As we saw earlier in this chapter, it is desirable to include evaluation of some sort throughout the design process. The main distinction between evaluation of a design and evaluation of an implementation is that in the latter case a physical artifact exists. This may be anything from a paper mock-up to a full implementation, but it is something concrete that can be tested. Evaluation of a design, on the other hand, precedes this stage and seeks instead to provide information to feed the development of the physical artifact.

Roughly speaking, evaluation at the design stage needs to be quick and cheap so might involve design experts only and be analytic, whereas evaluation of the implementation needs to be more comprehensive, so brings in users as participants. There are, of course, exceptions to this: participatory design (see Chapter 13)
Chapter 9 ■ Evaluation techniques

involves users throughout the design process, and techniques such as cognitive walkthrough are expert based and analytic but can be used to evaluate implementations as well as designs.

Early evaluation, whether of a design or an early prototype or mock-up, will bring the greatest pay-off since problems can be easily resolved at this stage. As more commitment is made to a particular design in the implementation, it becomes increasingly difficult for changes to be made, no matter what the evaluation suggests. Ironically, the most resources are often ploughed into late evaluations. This is less profitable and should be avoided, although obviously some evaluation with users is required with a complete, or almost complete, system, since some elements (such as system performance) will only be evident in the working system.

Laboratory vs. field studies

We have already discussed the pros and cons of these two styles of evaluation. Laboratory studies allow controlled experimentation and observation while losing something of the naturalness of the user’s environment. Field studies retain the latter but do not allow control over user activity. Ideally the design process should include both styles of evaluation, probably with laboratory studies dominating the early stages and field studies conducted with the new implementation.

Subjective vs. objective

Evaluation techniques also vary according to their objectivity – some techniques rely heavily on the interpretation of the evaluator, others would provide similar information for anyone correctly carrying out the procedure. The more subjective techniques, such as cognitive walkthrough or think aloud, rely to a large extent on the knowledge and expertise of the evaluator, who must recognize problems and understand what the user is doing. They can be powerful if used correctly and will provide information that may not be available from more objective methods. However, the problem of evaluator bias should be recognized and avoided. One way to decrease the possibility of bias is to use more than one evaluator. Objective techniques, on the other hand, should produce repeatable results, which are not dependent on the persuasion of the particular evaluator. Controlled experiments are an example of an objective measure. These avoid bias and provide comparable results but may not reveal the unexpected problem or give detailed feedback on user experience. Ideally, both objective and subjective approaches should be used.

The extent to which the results are dependent on the subjective response of the user also varies. At one extreme is asking for the user’s opinions, which is highly subjective; at the other is measuring physiological changes in the body, which are outside the user’s control.

Qualitative vs. quantitative measures

The type of measurement provided by the evaluation technique is also an important consideration. There are two main types: quantitative measurement and qualitative
Choosing an evaluation method

The level of information required from an evaluation may also vary. The information required by an evaluator at any stage of the design process may range from low-level information to enable a design decision to be made (for example, which font is most readable) to higher-level information, such as ‘Is the system usable?’. Some evaluation techniques, such as controlled experiments, are excellent at providing low-level information – an experiment can be designed to measure a particular aspect of the interface. Higher-level information can be gathered using questionnaire and interview techniques, which provide a more general impression of the user’s view of the system.

Immediacy of response

Another factor distinguishing evaluation techniques is the immediacy of the response they provide. Some methods, such as think aloud, record the user’s behavior at the time of the interaction itself. Others, such as post-task walkthrough, rely on the user’s recollection of events. Such recollection is liable to suffer from bias in recall and reconstruction, with users interpreting events according to their preconceptions. Recall may also be incomplete. However, immediate techniques can also be problematic, since the process of measurement can actually alter the way the user works.

Intrusiveness

Related to the immediacy of the response is the intrusiveness of the technique itself. Certain techniques, particularly those that produce immediate measurements, are obvious to the user during the interaction and therefore run the risk of influencing the way the user behaves. Sensitive activity on the part of the evaluator can help to reduce this but cannot remove it altogether. Most immediate evaluation techniques are intrusive, with the exception of automatic system logging. Unfortunately, this is limited in the information that it can provide and is difficult to interpret.
Resources

The final consideration when selecting an evaluation technique is the availability of resources. Resources to consider include equipment, time, money, participants, expertise of evaluator and context. Some decisions are forced by resource limitations: it is not possible to produce a video protocol without access to a video camera (and probably editing facilities as well). However, other decisions are not so clear cut. For example, time and money may be limited, forcing a choice between two possible evaluations. In these circumstances, the evaluator must decide which evaluation tactic will produce the most effective and useful information for the system under consideration. It may be possible to use results from other people’s experiments to avoid having to conduct new experiments.

Some techniques are more reliant on evaluator expertise than others, for example the more formal analytic techniques. If evaluator expertise is limited, it may be more practical to use more simple heuristic methods than methods that require understanding of user goal structures and so on.

Finally, the context in which evaluation can occur will influence what can be done. For practical reasons it may not be possible to gain access to the intended users of a system (if it is a general system, for example). Or it may not be feasible to test the system in its intended environment (for example, a system for a space station or a defence system). In these circumstances simulations must be used.

9.5.2 A classification of evaluation techniques

Using the factors discussed in the previous section we can classify the evaluation techniques we have considered in this chapter. This allows us to identify the techniques that most closely fit our requirements. Table 9.4 shows the classification for

<table>
<thead>
<tr>
<th>Table 9.4 Classification of analytic evaluation techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stage</strong></td>
</tr>
<tr>
<td>Style</td>
</tr>
<tr>
<td>Objective?</td>
</tr>
<tr>
<td>Measure</td>
</tr>
<tr>
<td>Information</td>
</tr>
<tr>
<td>Immediacy</td>
</tr>
<tr>
<td>Intrusive?</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>Equipment</td>
</tr>
<tr>
<td>Expertise</td>
</tr>
</tbody>
</table>
9.5 Choosing an evaluation method

analytic techniques, Table 9.5 for experimental and query techniques, Table 9.6 for observational and Table 9.7 for monitoring techniques.

The classification is intended as a rough guide only – some of the techniques do not fit easily into such a classification since their use can vary considerably.

Table 9.5 Classification of experimental and query evaluation techniques

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>Interviews</th>
<th>Questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stage</strong></td>
<td>Throughout</td>
<td>Throughout</td>
<td>Throughout</td>
</tr>
<tr>
<td><strong>Style</strong></td>
<td>Laboratory</td>
<td>Lab/field</td>
<td>Lab/field</td>
</tr>
<tr>
<td><strong>Objective?</strong></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><strong>Measure</strong></td>
<td>Quantitative</td>
<td>Qualitative/quantitative</td>
<td>Qualitative/quantitative</td>
</tr>
<tr>
<td><strong>Information</strong></td>
<td>Low/high level</td>
<td>High level</td>
<td>High level</td>
</tr>
<tr>
<td><strong>Immediacy</strong></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><strong>Intrusive?</strong></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><strong>Time</strong></td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td><strong>Equipment</strong></td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td><strong>Expertise</strong></td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Table 9.6 Classification of observational evaluation techniques

<table>
<thead>
<tr>
<th></th>
<th>Think aloud¹</th>
<th>Protocol analysis²</th>
<th>Post-task walkthrough</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stage</strong></td>
<td>Implementation</td>
<td>Implementation</td>
<td>Implementation</td>
</tr>
<tr>
<td><strong>Style</strong></td>
<td>Lab/field</td>
<td>Lab/field</td>
<td>Lab/field</td>
</tr>
<tr>
<td><strong>Objective?</strong></td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><strong>Measure</strong></td>
<td>Qualitative</td>
<td>Qualitative</td>
<td>Qualitative</td>
</tr>
<tr>
<td><strong>Information</strong></td>
<td>High/low level</td>
<td>High/low level</td>
<td>High/low level</td>
</tr>
<tr>
<td><strong>Immediacy</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>Intrusive?</strong></td>
<td>Yes</td>
<td>Yes²</td>
<td>No</td>
</tr>
<tr>
<td><strong>Time</strong></td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td><strong>Equipment</strong></td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td><strong>Expertise</strong></td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
</tr>
</tbody>
</table>

¹ Assuming a simple paper and pencil record
² Including video, audio and system recording
³ Except system logs
Evaluation is an integral part of the design process and should take place throughout the design life cycle. Its aim is to test the functionality and usability of the design and to identify and rectify any problems. It can also try to determine the user’s attitude and response to the system. It can take place in a specialist laboratory or in the user’s workplace, and may or may not involve active participation on the part of the user.

A design can be evaluated before any implementation work has started, to minimize the cost of early design errors. Most techniques for evaluation at this stage are analytic and involve using an expert to assess the design against cognitive and usability principles. Previous experimental results and modeling approaches can also provide insight at this stage. Once an artifact has been developed (whether a prototype or full system), experimental and observational techniques can be used to get both quantitative and qualitative results. Query techniques provide subjective information from the user. If more objective information is required, physiological monitoring can capture the user’s physical responses to the system.

The choice of evaluation method is largely dependent on what is required of the evaluation. Evaluation methods vary in the stage at which they are commonly used and where they can be used. Some are more subjective than others and provide qualitative rather than quantitative measures. Some provide immediate information while others get feedback after the event. However, the more immediate methods also tend to intrude most seriously on the interaction. Finally, some require more resources in terms of time, equipment and expertise than others.

### Table 9.7 Classification of monitoring evaluation techniques

<table>
<thead>
<tr>
<th></th>
<th>Eye tracking</th>
<th>Physiological measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td>Implementation</td>
<td>Implementation</td>
</tr>
<tr>
<td>Style</td>
<td>Lab</td>
<td>Lab</td>
</tr>
<tr>
<td>Objective?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Measure</td>
<td>Quantitative</td>
<td>Quantitative</td>
</tr>
<tr>
<td>Information</td>
<td>Low level</td>
<td>Low level</td>
</tr>
<tr>
<td>Immediacy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intrusive?</td>
<td>No(^1)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>Medium/high</td>
<td>Medium/high</td>
</tr>
<tr>
<td>Equipment</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Expertise</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

\(^1\) If the equipment is not head mounted
9.1 In groups or pairs, use the cognitive walkthrough example, and what you know about user psychology (see Chapter 1), to discuss the design of a computer application of your choice (for example, a word processor or a drawing package). (Hint: Focus your discussion on one or two specific tasks within the application.)

9.2 What are the benefits and problems of using video in experimentation? If you have access to a video recorder, attempt to transcribe a piece of action and conversation (it does not have to be an experiment – a soap opera will do!). What problems did you encounter?

9.3 In Section 9.4.2, we saw that the observed results could be the result of interference. Can you think of alternative designs that may make this less likely? Remember that individual variation was very high, so you must retain a within-subjects design, but you may perform more tests on each participant.

9.4 Choose an appropriate evaluation method for each of the following situations. In each case identify:
(i) the participants
(ii) the technique used
(iii) representative tasks to be examined
(iv) measurements that would be appropriate
(v) an outline plan for carrying out the evaluation.

(a) You are at an early stage in the design of a spreadsheet package and you wish to test what type of icons will be easiest to learn.
(b) You have a prototype for a theatre booking system to be used by potential theatre-goers to reduce queues at the box office.
(c) You have designed and implemented a new game system and want to evaluate it before release.
(d) You have developed a group decision support system for a solicitor’s office.
(e) You have been asked to develop a system to store and manage student exam results and would like to test two different designs prior to implementation or prototyping.

9.5 Complete the cognitive walkthrough example for the video remote control design.

9.6 In defining an experimental study, describe:
(a) how you as an experimenter would formulate the hypothesis to be supported or refuted by your study;
(b) how you would decide between a within-groups or between-groups experimental design with your subjects.

9.7 What are the factors governing the choice of an appropriate evaluation method for different interactive systems? Give brief details.