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ABSTRACT 
Physical experiences are frequently used to represent 
mathematics to children. However, students sometimes fail 
to transfer performance to symbolic representations of 
problems. In this paper, we suggest that tangible interfaces 
can promote transfer by structuring physical experiences. 
We realize our concept in a system, Button Matrix, that 
uses coupled tactile, vibration and visual feedback to a) 
highlight features of a physical experience that represents 
arithmetic concepts and b) cue reflection on the links 
between the physical experience and mathematical 
symbols.   
 
ACM Classification Keywords 
H.5.2. [Information Interfaces and Presentation]: User 
Interfaces-- input devices and strategies.  

INTRODUCTION 
Tangible user interfaces (TUIs) and physical materials (e.g. 
Diennes Blocks) are frequently used to teach children 
abstract concepts, as in science and mathematics [7,8]. 
These media are popular because children often 
demonstrate knowledge through physical interaction that 
they cannot in words or in pictures [6,10], and may solve 
problems better when physically “working them out” [6,7]. 
However, in many situations, children do not transfer 
performance with physical to symbolic representations of 
problems [8]. What is needed are features that promote 
transfer. Two ways to promote transfer may be: 
highlighting conceptually relevant physical features [7], and 
cueing reflection on the links between physical and 
symbolic representations [10]. Here, we describe how 
tangible interfaces might  accomplish these goals. 

THEORETICAL BACKGROUND 
Mathematical concepts can be represented in various ways 
[7], including symbols, graphs, and objects.  Generally, 

students find concrete representations, such as pictures and 
objects, easier to understand than symbolic representations. 
[7,8]. However, mathematical aptitude requires fluency 
with symbolic representations [9]; training students to 
translate between different representations is a goal of 
mathematics education [9,4]. 

Translating between representations presupposes 
knowledge of the concepts' essential, or 'representation-
independent' features [10]. Because concepts must be 
introduced via a representation, a question in mathematics 
education is which representation to use? The ideal 
representation allows students to understand mathematics 
using knowledge they already have, without downplaying 
the concepts' essential features, or introducing inessential 
ones [7,5].   

Nunez and Lakoff propose that because mathematics 
derives from physical experience, teachers should introduce 
mathematics via physical objects or gesture [6]. This allows 
students to understand mathematical concepts, such as 
division, as physical actions, such as partitioning sets of 
objects. The rationale is that because physical constraints 
on this action reflect mathematical rules, (one cannot 
evenly partition an odd set, or divide an odd integer), 
students can apply such “physical knowledge” to other 
representations.   

Applications of Lakoff's view have met variable success. 
When learning through physical experience, students are 
more engaged [7,8], and demonstrate problem-solving 
strategies they do not in writing or speech [5]; however, 
students rarely transfer performance to symbolic 
representations [8].  

Failure to transfer knowledge from one representation to 
another could suggest deficiencies in the representation 
itself, (it misrepresents some, or cannot represent all, 
conceptual features), or in learners' comprehension of its 
relations to the concept. In the latter case, our goal is 
changing how students experience the representation, 
versus changing the representational mode. 

There is evidence supporting this latter alternative. Goldin-
Meadow investigated which factors predicted transfer from 
gestural to symbolic representations of balance problems; 
the gesture was intended to highlight a mathematically 
viable strategy [5]. As a group, the gesturers' pre-post test 
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performance improved more than non-gesturers, and they 
seemed to use the strategy the gesture represented. In 
support of Lakoff's view, this suggests that physical 
experiences can develop transferable knowledge. However, 
not all gesturers improved; those who did could verbalize 
the strategy the gesture represented. Because telling 
students the strategy did not improve performance, Goldin-
Meadow hypothesized that gesture only benefited students 
inclined to experience the gesture mathematically, i.e., they 
attended to mathematically relevant features, and 
interpreted them as mathematical concepts [5].  

The question then becomes how to encourage mathematical 
ways of experiencing physical representations? Goldin-
Meadows' work suggests that verbally conveying the 
relations between representation and concept is insufficient. 
By Nunez and Lakoff's view, “mathematical ways” of 
experiencing would also develop through physical 
experience. Entertaining this perspective, we urge designers 
to create physical experiences that encourage mathematical 
ways of experiencing them. 

Recent work suggests two strategies: a) highlight 
mathematically relevant physical features and b) cue 
reflection on their connections with symbolic 
representations [7,9]. Both promote transfer in more 
students. For example, Walkington et al found that “full-
bodied” gestures, which highlighted mathematical 
constraints by mapping them to salient biomechanical 
constraints, produced transfer in more students than “hand-
only” gestures, which did not [13]. However, transfer still 
depended on students' apprehending mathematically 
relevant gestural features, such as the “length” of an 
imaginary hypotenuse [13]. More recently, Gerofsky 
mapped “full-bodied” gestures to functions, and highlighted 
relevant gestural features, e.g, extrema and roots, 
acoustically [4]. She found transfer in all students; however, 
she measured transfer to graphic representations alone. It 
thus remains unclear how to help all students apprehend 
mathematically relevant features, and to relate them to 
symbolic representations. In the following sections, we 
describe how programmable tangible interfaces could 
accomplish both goals.  

The first goal is highlighting mathematically relevant 
physical features. “Dually coding” such features in stimuli 
of another modality, one that is salient and related to the 
physical action, could help students apprehend them [3]. 
Programmable interfaces, which 'know' the relevant 
mathematical features, could control these additional 
stimuli. Consider the representation “division is partitioning 
physical sets”, in which case “indivisibility” is subset 
inequality. A programmable interface, which “knows” the 
set size and current divisor, could require more force to 
partition indivisible than divisible sets. Students may be 
more perceptive to the core relation between set size, subset 
equality and number of subsets when the requisite force to 
partition correlates it.  

Although many modalities could dually-code the 
relationship between physical action and mathematical 
concept, work on human motor learning suggests that 
tangible (e.g., texture, resistance), as opposed to non-
tangible (vision and sound) feedback, is ideal: non-tangible 
feedback may distract learners from their physical 
experiences [2] and prevent them from learning the 
concepts the experience represents. Tangible stimuli may 
also have an advantage because they can directly constrain 
physical actions, e.g., the increasing resistance of an 
exercise band directly constrains the ease with which I can 
stretch it apart. Non-tangible stimuli, by contrast, constrain 
action indirectly (e.g. “red light” makes us stop because of 
an additional rule). Stimuli that directly constrain physical 
action may better reflect how mathematical properties (e.g., 
divisibility of m by n) constrain mathematical actions (can I 
evenly partition m objects into n subsets?) [12].  

While strictly tangible feedback may meet our first design 
goal (highlight the action's mathematically relevant 
features), our second, promote reflection on the connections 
between different mathematical representations,  requires 
visual-symbolic representations, i.e., of expressions like “2 
x 3 =6”. Ullmer and Ishii [10]  suggest that 'coupling' 
tangible and visual representations promotes their 
integration; in most investigations of physical mathematical 
experience, however, students are exposed to symbolic 
representations after the experience [4,12,7]. Work on 
multimodal perception may support Ullmer's view: stimuli 
are integrated better when presented simultaneously, 
presumably because the common time-course makes them 
seem related [1], and because students' memories of the 
stimuli experience less decay [1].  

We therefore encourage designers to use coupled tangible 
and visual (symbolic) materials to highlight mathematically 
relevant features of physical experience, and promote 
integration between physical and symbolic representations. 
In the remaining section, we show how designers might 
realize both ideas via describing our initial proof of 
concept, “Button Matrix”: a tangible system for learning 
arithmetic. 

DESIGN RATIONALE AND IMPLICATION: 

“Button Matrix” is a tangible system that uses coupled 
physical (texture and vibration) and visual feedback to 
highlight features of an action (pressing sequences of 
buttons) that represent basic arithmetic (addition, 
subtraction and multiplication). Basic arithmetic seemed a 
fitting domain because it has been targeted by various other 
tangible systems [7,8] and because students' core problems 
(appreciating commutativity and the recursive definition of 
integers [9]) are well-defined. 

There are general criteria for a physical experience that 
represents mathematics and the system that supports it. The 
'physical experience' must map unintuitive mathematical to 
intuitive physical procedures [10]. The system must be easy 
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to learn and use. It must provide interpretable feedback, and 
allow students to offload 'irrelevant' cognitive load (e.g., 
keeping track of where they are in the problem) [11]. Every 
salient feature should be mathematically relevant, and no 
feature should convey erroneous ideas. A successful system 
must withstand “rough” button presses, and conceal 
electronics. It should be small enough to sit on students' 
desks, but large enough to hold students' attention. We 
advocate additional criteria: a successful system highlights 
physical features that represent mathematical concepts and 
promotes on-line reflection on their relation to symbolic 
representations.  

DESIGN SOLUTION 

Button Matrix maps arithmetic to action via Nunez and 
Lakoff's metaphor of “journeying” along a number line [6]. 
It is intended for grades 1-2. Students duplicate on-screen 
integer steps in arithmetic problems (e.g. 2+5) by pressing 
buttons in a continuous sequence along a 3 by 3 matrix; this 
captures a recursive definition of integers (1 or 1+ an 
integer) as decomposable sets, which extends grade 1-2 
students' knowledge of counting and patterns [9,10], and 
may be useful in later grades, when students 'balance 
equations' by identifying integer operands' missing 
components (e.g. 7+3=5+X) [5]. 

Button Matrix maps an unintuitive idea (different symbolic 
expressions, such as 2x3, 3+3, 7-1, are mathematically 
equivalent) to an intuitive physical fact (moving up 4, then 
2, brings me to the same place as 2, then 4, or 3, then 3). 
Here, we describe how we used coupled tangible and visual 
feedback to highlight this physical feature (the equivalence 
of different journeys) and its relation to the mathematical 
analogue (various procedures can achieve equivalent 
results). 

TECHNICAL FEATURES 

The system is an Arduino microcontrolled button matrix 
that communicates with laptop-run software. The software 
displays a screen that the microcontroller updates; the 
software sends each problem to the microcontroller. Button 
Matrix sits on students' desks; to promote engagement, it 
covers the desk. A foamcore box hides the electronics. The 
caps and buttons are fused with modelling clay, and 
reinforced with wood glue.  

INTERFACE FEATURES AND FUNCTIONALITY 

The software allows teachers to specify sequences of 
addition, subtraction and multiplication problems with 
operands between 0 and 16; the program displays the 
problems in sequence. 

Button Matrix represents problems in steps. Each step is an 
integer. Addition and subtraction problems have two steps 
(one for each operand); multiplication problems (mxn) have 
n steps, each of which is m. 

Students complete steps by pressing a number of buttons 
equal to the integer. An integer begins one button past 
where the previous terminated. At the end of the problem, 
students press a button that represents the result. Each press 
represents a one unit change in the accumulating result; 
buttons represent different integers. Adding is moving 
forward; subtraction moving backward.  

The screen represents the student's progress in 
mathematical symbols. It has 3 components: the Stepper, 
which displays the current step, surrounded by a rectangle, 
and all steps that preceded it; the accumulator, which 
displays the current sum that the students' journey 
represents, and the solution, which appears when students 
complete the problem, and displays the problem expression, 
along with the equals sign and the result (e.g., 2x5=10). 

The form of the expressions reinforced the equivalence of 
different arithmetic procedures, and the relationship 
between these expressions and the physical experience. For 
example, the Stepper conveyed a key idea- multiplication is 
iterated addition- by representing the steps of a 
multiplication problem (nxm) as n0+n1+...nm; students only 
see it as nxm upon completing the problem, when the 
solution (nxm=nm) appears. This was intended to provide 
grade 1-2 students, who do not know multiplication or the 
symbol “x”, a grounding of multiplication as “iterated 
addition” [9]; it also related multiplication to the physical 
procedure of executing an additive journey some number of 
times. For results >9, the accumulator provided an 
additional representation: the current sum in base 9 (e.g., 
11=9x1+2). The base 9 representation reflects the physical 
action that produces results >9. Because the matrix has 9 
buttons, every 9 buttons, students return to the first button; 
conveying these longer “journeys” as units of 9, or “times 
around the matrix”, reinforces the connection between 
multiplication and addition, and between the physical and 
arithmetic procedures. The on-screen display and physical 
matrix were coupled. All screen components updated 
immediately after the physical interface issued tactile 
feedback; this highlighted and promoted reflection on the 
links between all symbolic and physical representations of 
the students' progress through the problem.  

The matrix supplied two forms of tactile feedback. The first 
attributed a pager motor, which signaled correct and 
incorrect button presses. Correct presses elicited a 50ms 
pulse; incorrect presses elicited a continuous buzz that 
ceased when the user pressed the correct button. The second 
attributed the button's textures. Each button had a unique 
texture. Because our matrix was 3 by 3, we represented 
integers texturally in “base 3 notation”.  Each button had 1 
to 3 small and 0 to 2 large beads. The large beads 
represented “one 3”; thus, only the second and third column 
had large beads (1 and 2 respectively). Like the 
accumulator's representation of results >9 as “times round a 
9x9 matrix”, the base 3 notation highlighted how journey 
segments <=9 could be represented as “times up a column”. 
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Figure 1: stepping through the problem “7x2=14”. 

We spaced the beads such that, using two fingers to depress 
the button, students felt the small and large beads on 
separate fingers. The short pulse focused students' attention 
on the feel of the current button, while the sustained pulse 
washed it out.  

The distinctly textured buttons highlighted the physical 
feature, that various journeys achieve the 'same destination', 
that represented the arithmetic concept, that various 
operations achieve the same result. Because of the distinctly 
textured buttons, mathematically equivalent procedures feel 
the same. Different procedures with equal results (6-2, 
2+2), end on the same button; that button feels unique. 
Because subtraction “goes backward”, while addition 
moves forward, subtraction “feels like” reversing addition. 
Forcing students to wait until they feel the short pulse 
prevents them from “rushing” through the journey and 
promotes attention to the mathematically relevant textures.  

USE SCENARIO 

Button Matrix is an in-class supplement for grade 1-2 
students. We envision students alternating between Button 
Matrix and paper and pencil to solve arithmetic drill 
problems. Instructors should specify sets of problems that 
emphasize equivalence (e.g., 2x3=3+3=4+2=2+4) and are 
appropriate to the child's skill level. While the instructor 
should explain and provide examples of how to use Button 
Matrix, students should be able to complete problems alone.  

CONCLUSION 

We have articulated a rationale for representing 
mathematics in physical experiences, and the need for 
interfaces that promote transfer from physical experiences 
to symbolic representations. Button Matrix is one 
realization of our core idea, that by highlighting 
mathematically relevant physical features, and cueing 
reflection on their connection to mathematical symbols, 

tangible interfaces can promote learning through physical 
experience. Our next step is using Button Matrix to test our 
ideas. In the meantime, we hope that this conceptual piece 
inspires designers to consider new requirements for systems 
supporting embodied learning experiences, and new ways 
of mapping tangible to conceptual features. 
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